
L3 – Probabilités (Année 2025/2026)

Anne Gagneux & Lison Blondeau-Patissier

TD 12 – Chaînes de Markov (distributions stationnaires)

& Stats (corrigé)

Exercice 1.

On considère une marche aléatoire sur le graphe suivant (c’est à dire

qu’à chaque étape, on choisit le sommet suivant uniformément au ha-

sard parmi les voisins du sommet courant).

0

1 2

3 4

1. On suppose que la distribution initiale est π0 = (1, 0, 0, 0, 0) (i.e.

X0 = 0 avec probabilité 1). Le vecteur de distribution πn converge-

t-il lorsque n tend vers l’infini ? Si oui, déterminer sa limite.

☞ La chaîne de Markov associée à la marche aléatoire sur le graphe est ir-

réductible (le graphe est connexe). Elle est aussi apériodique grâce au triangle

formé par les états 0, 1 et 2. En effet, la période de l’état 0 est le pgcd de 2 (un

aller retour 0 − 1 − 0) et 3 (un cycle 0 − 1 − 2 − 0). Donc l’état 0 est apério-

dique. Comme la chaîne est irréductible tous les états sont apériodiques. Si on

1



trouve une distribution stationnaire, le théorème de convergence nous assurera

une convergence vers cette distribution stationnaire. On observe que la distri-

bution π = (1/6, 1/4, 1/4, 1/6, 1/6) est stationnaire (on peut la calculer en

résolvant le système d’équations πQ = π par exemple – on peut remarquer que

les états 1 et 2 se comportent de la même façon, de même pour 3 et 4, donc il

suffit de considérer un système à trois inconnues.). Le théorème de convergence

nous permet de conclure que πn → π quand n tend vers l’infini.

2. Même question si la distribution initiale est π0 = (0, 1
4 , 1

4 , 1
4 , 1

4).

☞ La réponse est la même, le théorème de convergence ne dépend pas de l’état

initial.

Exercice 2.

On étudie un modèle simple des échanges de molécules de gaz entre

deux récipients, et on s’intéresse à l’évolution du nombre de molécules

dans le premier récipient. Soit N le nombre total de molécules dans

les deux récipients. L’échange est modélisé de la façon suivante : si

le premier récipient contient x molécules à l’instant t, alors à l’instant

t + 1 il contient x + 1 molécules avec probabilité N−x
N et x − 1 molécules

avec probabilité x
N .

1. Décrire ce modèle avec une chaîne de Markov, en donnant l’espace

des états et la matrice de transition. Pour N = 3, dessiner la chaîne

de Markov correspondante.

☞
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Pour N ∈ N, on a les formules suivantes : Pi,i+1 = N−i
N , Pi,i−1 = i

N , Pi,j = 0

sinon.

2. Pour N ∈ N, donner la distribution stationnaire de la chaîne de

Markov.

☞ On utilise la propriété des flux : si on a une 2-partition de l’ensemble des

états S en S1 ⊎ S2, le « flux sortant » de S1 vers S2 est égal au « flux entrant »

de S2 vers S1 lorsque l’on est dans un état d’équilibre (i.e. lorsque l’on suit une

distribution stationnaire). Plus formellement :

∑
i∈S1

∑
j∈S2

π(i)Pi,j = ∑
i∈S1

∑
j∈S2

π(j)Pj,i .

Ici, en regardant une coupe entre i et i + 1 pour 0 ≤ i < N, on sait donc que

la distribution stationnaire π satisfait :

πi · N−i
N = πi+1

i+1
N i.e. πi+1 = N−i

i+1 πi

= π0 · ∏i
j=0

N−j
j+1

= ( N
i+1)π0

Donc pour 0 ≤ i ≤ N, on a πi = ( N
i+1)π0. Mais on sait aussi que ∑i πi = 1,

i.e. π0 · ∑N
i=0 (

N
i+1) = 1. On en déduit que π0 = 2−N.

3. On suppose qu’à l’instant t = 0, le premier récipient est vide (et le

deuxième récipient contient N molécules). On note T ≤ 1 le pro-
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chain instant où le premier récipient est vide. Calculer E [T].

☞ On sait que pour une chaîne irréductible finie, hi =
1
πi

. En particulier, pour

i = 0, on a h0 =
1

π0
= 2n.

Exercice 3.

Modèle de Poisson

Le modèle de Poisson est l’ensemble {P(λ), λ > 0}. On rappelle que

P(λ), pour un certain λ > 0, correspond a la loi donnée par

∀k ∈ N, Pλ(X = k) = exp(−λ)
λk

k!
. (1)

Vocabulaire :

— Un estimateur λ̃n de λ est convergent si pour tout λ ∈ Λ, λ̃n

converge vers λ en Pλ-probabilité, c’est à dire si ∀ϵ > 0,

lim
n

Pλ(|λ̃n − λ| ≥ ϵ) = 0 (2)

— Le bias d’estimateur λ̃n de λ (tel que Eλ[λ̃n] < ∞) est la fonction

b(λ̃n, ·) : Λ → R définie comme

b(λ̃n, λ) = Eλ[λ̃n]− λ (3)

Estimateur moment d’ordre 1
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1. Calculer Eλ[X] et déduire un estimateur de moment λ̃
(1)
n ☞

Eλ[X] = ∑
k

k exp(−λ)
λk

k!
(4)

= λ (5)

Donc on peut prendre λ̃
(1)
n (X1, . . . , Xn) = X̄n := 1

n ∑i(Xi)

2. Quel est le biais de cet estimateur ? ☞ On a Eλ[
1
n ∑i Xi] =

Eλ[X1] = λ donc c’est un estimateur non biaisé.

3. Cet estimateur est il consistant ? ☞ Oui, car une loi de Poisson

admet un moment d’ordre 2 et on conclut par la loi faible des grands

nombres (application de Tchebychev)

Estimateur moment d’ordre 2

1. Calculer un autre estimateur λ̃
(2)
n d’après l’expression de Eλ[X2].

☞ On trouve Eλ[X2] = λ(λ + 1) Soit m(λ) = λ2 + λ. On a pour

tout s > 0

m(λ) = s ⇐⇒ λ =

√
1
4
+ s − 1

2
= ϕ(s) (6)

On a que λ̃(2)(X1, . . . , Xn) = ϕ( 1
n ∑i X2

i ) est un estimateur de λ.

2. Cet estimateur est-il non-biaisé (i.e. b(λ̃(2)
n , λ) = 0) ? ☞ ϕ est
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strictement concave donc par l’inégalité de Jensen, il vient

Eλ[λ̃
(2)
n ] = Eλ[ϕ(

1
n ∑

i
X2

i )] < ϕ(Eλ
1
n ∑

i
X2

i ) = ϕ(λ2 + λ) = λ

(7)

Donc Eλ[λ̃
(2)
n ]− λ < 0, cet estimateur est biaisé.

Estimateur Maximum de Vraisemblance

1. Calculer la vraisemblance du modèle. ☞

L(λ|x1, . . . , xn) =
n

∏
i=1

Pλ(Xi = xi) = e−nλ λ∑i xi

x1! . . . xn!
. (8)

2. Calculer l’Estimateur Maximum de Vraisemblance (EMV). ☞ On

va calculer

argmaxλ>0 log L(λ|x1, . . . , xn) = argmaxλ>0 − nλ + ∑
i

xi log λ

(9)

Soit f (λ) := −nλ+∑i xi log λ et on calcule f ′(λ) = −n+∑i xi
1
λ et

f ′(λ) = 0 =⇒ λ = ∑i xi/n ? Ainsi, l’EMV pour un modèle Poisson

vaut λ̂n(X1, . . . , Xn) = X̄n.

Exercice 4.

Une k-coloration d’un graphe est une fonction des sommets du graphe

vers un ensemble de k couleurs. On dit qu’elle est propre si deux som-
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mets adjacents ne reçoivent jamais la même couleur. Un graphe est dit

k-colorable s’il possède une k-coloration propre.

Soit G un graphe 3-colorable.

1. Prouver qu’il existe une 2-coloration (non propre) telle qu’aucun

triangle n’est monochromatique (un triangle est monochromatique si

les trois sommets qui le composent reçoivent la meme couleur).

☞ Il existe une coloration propre Rouge, Bleu, Vert. On recolorie les sommets

verts en rouge. Chaque triangle contenait déjà un sommet rouge et un sommet

bleu avant la recoloration, et c’est toujours le cas après.

On considère maintenant l’algorithme suivant, dont le but est de trou-

ver une telle 2-coloration :

On commence avec une 2-coloration arbitraire.

Tant qu’il y a un triangle monochromatique, on choisit unifor-

mément un sommet parmi les trois sommets qui le composent,

et on change sa couleur.

On veut étudier l’espérance du nombre de recolorations avant de s’ar-

rêter.

Comme G est 3-colorable, il existe une coloration propre pour {Rouge, Bleu, Vert}

(mais on ne la connaît pas). On note R (resp. B, V) l’ensemble des som-

mets colorés rouge (resp. bleu, vert) dans cette 3-coloration.

Considérons maintenant une 2-coloration arbitraire c de G (en rouge

et bleu, disons). Soit m(c) le nombre de sommets de R qui ne sont pas

colorés rouge dans c, plus le nombre de sommets de B qui ne sont pas
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colorés bleu dans c.

2. Que dire si m(c) = n ou m(c) = 0 ?

☞ Dans ces cas, aucun triangle n’est monochromatique et on a terminé.

3. En s’inspirant de l’exemple du cours sur 2-SAT, modéliser l’évolu-

tion de m(c) par une chaîne de Markov sur {0, . . . , n}. Quel·s sont

le ou les sommet·s à atteindre pour terminer ?

Pour j ∈ {0, . . . , n}, que peut-on dire de l’état j par rapport à l’état

n − j ?

☞ Supposons m(c) = j ̸= 0, n et regardons le triangle monochromatique

choisi. Sans perte de généralité, on peut supposer qu’il est entièrement rouge.

Avec proba 1/3, on tire le sommet de V et on le recolore (en bleu) ; cela laisse

m(c) inchangé. Avec proba 1/3, on tire le sommet de B et on le recolore ; on

passe à m(c)− 1. Avec proba 1/3, on tire le sommet de R et on le recolore ;

on passe de m(c) à m(c) + 1.

On obtient donc la chaîne de Markov suivante : pour j ̸= 0, n, avec proba 1/3

on passe à j − 1, avec proba 1/3 on reste sur j, et avec proba 1/3 on passe

à j + 1. Pour j = 0 ou n, on reste sur l’état courant avec proba 1. Le but est

d’atteindre le sommet 0 ou le sommet n. La chaîne est complètement symétrique

entre l’état j et l’état n − j.

4. Soit hj l’espérance du nombre de recolorations à effectuer pour ter-

miner lorsqu’on part d’une 2-coloration c pour laquelle m(c) = j.

Pour j ∈ {1, . . . , n − 1}, exprimer hj en fonction de hj−1 et hj+1.

Déterminer h0 et hn.
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☞ On a h0 = 0 et hn = 0. Pour j ∈ {1, . . . , n − 1}, on a :

hj =
1
3
(1 + hj−1 + 1 + hj + 1 + hj+1)

autrement dit :

hj =
3
2
+

1
2
(hj−1 + hj+1) .

5. Montrer que hj = hj+1 + f (j) pour une certaine fonction f à déter-

miner, avec f (0) = −h1.

☞ On a h0 = h1 + f (0) = h1 − h1 = 0 : ok. Par récurrence, on calcule :

hj =
3
2
+

1
2
(hj−1 + hj+1) =

3
2
+

1
2
(hj + f (j − 1) + hj+1)

d’où
1
2

hj =
3
2
+

1
2

f (j − 1) +
1
2

hj+1

donc hj = hj+1 + 3 + f (j − 1) = hj+1 + f (j) avec f (j) = 3 + f (j − 1), et

donc f (j) = 3j − h1.

6. Prouver que hn/2 = O(n2). Conclure.

Indication : On pourra utiliser la relation h1 = hn−1, obtenue par symé-

trie.

☞ On a hn−1 = hn + f (n− 1) = 0+ f (n− 1). Comme h1 = hn−1 et f (n−

1) = 3(n − 1)− h1, on obtient h1 = 3(n − 1)− h1 d’où h1 = 3(n − 1)/2.
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Donc h(j) = hj+1 + 3j − 3(n − 1)/2. Ainsi,

hj = hn +
n−1

∑
k=j

(3j− 3
2
(n− 1)) = 0+ 3

n−1

∑
k=j

j− 3(n − 1)(n − j)
2

= 3
(n − 1 + j)(n − j)

2
− 3(n − 1)(n − j)

2
= 3

(n − j)
2

(n− 1+ j− (n− 1)) =
3j(n − j)

2

d’où

hn/2 =
3(n/2)2

2
= O(n2) .

Comme hn/2 est le "milieu" de la chaîne, c’est le pire cas (on peut vérifier que

c’est le maximum de hj) et donc l’espérance du nombre de recolorations est bien

quadratique.

Exercice 5.

Une tour se déplace sur un échiquier de 8 × 8 cases uniformément au

hasard (depuis la case de coordonnées (x, y), elle peut se déplacer sur

une des cases de l’ensemble {(x′, y)|x′ = x} ∪ {(x, yi)|y′ = y}). Au

bout de combien de déplacements en moyenne revient-elle à la case de

départ ?

☞ On peut modéliser le problème par une chaine de Markov. Il y a 64 états. La

chaine est apériodique, irréductible et récurrente. On va calculer la probabilité

invariante : sur un graphe G, elle vaut π(x) = degv
2|E| . On en déduit que

π(x) =
14

14 · 64
=

1
64

(10)

La tour revient à la case de départ en moyenne en 1
π déplacements, i.e. 64.

Même question pour un cavalier qui part d’un coin de l’échiquier.
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☞ Si v dénote le coin de l’échiquier, on a deg(v) = 2 et on compte que

2|E| = 336 d’où le temps de retour moyen qui vaut 168.
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