L3 — Probabilités (Année 2025/2026)

Anne Gagneux & Lison Blondeau-Patissier

TD 12 — Chaines de Markov (distributions stationnaires)

& Stats (corrigé)

Exercice 1.
On considere une marche aléatoire sur le graphe suivant (c’est a dire
qu’a chaque étape, on choisit le sommet suivant uniformément au ha-

sard parmi les voisins du sommet courant).

ofihg
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1. On suppose que la distribution initiale est 7p = (1,0,0,0,0) (i.e.
Xop = 0 avec probabilité 1). Le vecteur de distribution 77, converge-
t-il lorsque n tend vers l'infini ? Si oui, déterminer sa limite.

15" La chaine de Markov associée a la marche aléatoire sur le graphe est ir-

réductible (le graphe est connexe). Elle est aussi apériodique grace au triangle

formé par les états 0,1 et 2. En effet, la période de I'état O est le pged de 2 (un
aller retour 0 —1 —0) et 3 (un cycle 0 —1 —2 —0). Donc I'état O est apério-
dique. Comme la chaine est irréductible tous les états sont apériodiques. Si on
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trouve une distribution stationnaire, le théoréme de convergence nous assurera
une convergence vers cette distribution stationnaire. On observe que la distri-
bution T = (1/6,1/4,1/4,1/6,1/6) est stationnaire (on peut la calculer en
résolvant le systeme d'équations 7tQ = 71 par exemple — on peut remarquer que
les états 1 et 2 se comportent de la méme facon, de méme pour 3 et 4, donc il
suffit de considérer un systéme a trois inconnues.). Le théoréme de convergence

nous permet de conclure que 71, — 7t quand n tend vers |'infini.

2. Meéme question si la distribution initiale est 77y = (0, }1, }1, }L, }L)
1" |a réponse est la méme, le théoréme de convergence ne dépend pas de |'état

initial.

Exercice 2.

On étudie un modele simple des échanges de molécules de gaz entre
deux récipients, et on s’intéresse a 1’évolution du nombre de molécules
dans le premier récipient. Soit N le nombre total de molécules dans
les deux récipients. L'échange est modélisé de la fagcon suivante : si

le premier récipient contient x molécules a l'instant ¢, alors a 1'instant

N—x

N etx—1 molécules

t +1 il contient x 4 1 molécules avec probabilité
avec probabilité 5.
1. Décrire ce modele avec une chaine de Markov, en donnant 'espace

des états et la matrice de transition. Pour N = 3, dessiner la chaine

de Markov correspondante.



1/3 2/3 1

@v 23 s

Pour N € N, on a les formules suivantes : P;j11 = % Pii1=v Pj=0

sinon.

2. Pour N € N, donner la distribution stationnaire de la chaine de
Markov.

=" On utilise la propriété des flux : si on a une 2-partition de I'ensemble des

états S en 51 W Sy, le « flux sortant » de Sy vers Sy est égal au « flux entrant »

de Sy vers 51 lorsque |'on est dans un état d'équilibre (i.e. lorsque I'on suit une

distribution stationnaire). Plus formellement :

Y Y aiPy=Y ¥ ()P

€5 jESz €5 jESz

Ici, en regardant une coupe entre i et i + 1 pour 0 < i < N, on sait donc que

la distribution stationnaire 7T satisfait :

N—i

7T - N TCH&W le. i1 — i—i-_lﬂi
i N—j
_ N
= (;11)70

Donc pour 0 <i < N,ona 7w = (ifl)no. Mais on sait aussi que Y, 71; = 1,

ie 7o YN, (ifl) = 1. On en déduit que 1o =27V,
3. On suppose qu’a l'instant t = 0, le premier récipient est vide (et le

deuxiéme récipient contient N molécules). On note T < 1 le pro-
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chain instant ot le premier récipient est vide. Calculer E [T].
I=5" On sait que pour une chaine irréductible finie, h; = % En particulier, pour

i:O,onahozni():Z”.

Exercice 3.

Modéle de Poisson

Le modele de Poisson est I'ensemble {P(A),A > 0}. On rappelle que
P(A), pour un certain A > 0, correspond a la loi donnée par

)\k

VkeN, Py(X=k) = exp(—)\)F.

Vocabulaire :
— Un estimateur A, de A est convergent si pour tout A € A, A,

converge vers A en Py-probabilité, c’est a dire si Ve > 0,
imP,(]A, — Al >€) =0 (2)

— Le bias d’estimateur A, de A (tel que E\[A,] < o) est la fonction

b(A,,-) : A — R définie comme
b(An,A) =Ea[As] — A (3)

Estimateur moment d’ordre 1



1. Calculer E, [X] et déduire un estimateur de moment ALY e

k
Ea[X) = Ykexp(—A); @
k .

=A (5)

Donc on peut prendre )lgll)(Xl,...,Xn) =X, = %E(Xi)

2. Quel est le biais de cet estimateur? 8 On a E,\[1Y, X =

[E,[X1] = A donc c'est un estimateur non biaisé.

3. Cet estimateur est il consistant? &= Oui, car une loi de Poisson
admet un moment d'ordre 2 et on conclut par la loi faible des grands

nombres (application de Tchebychev)
Estimateur moment d’ordre 2

1. Calculer un autre estimateur A\ d’apres I'expression de E,[X?].

1= On trouve Ey[X?] = A(A +1) Soit m(A) = A2+ A. On a pour

m()\):s<:>/\:\/}l+s—%:<p(s) (6)

On a que Z(z)(Xl,...,Xn) = gb(%zl- X?) est un estimateur de A.

tout s > 0

2. Cet estimateur est-il non-biaisé (i.e. b(f\,(f),)x) = 0)? ¥ ¢ est



strictement concave donc par |'inégalité de Jensen, il vient

EAAP) = Ealp( 1 X0)) < (Ex Y XD) = 92+ 1) = A

Donc ]EA[X,(E)] — A < 0, cet estimateur est biaisé.

Estimateur Maximum de Vraisemblance

1. Calculer la vraisemblance du modele. =

AL Xi

n
— ) — A
L(/\\xl,...,xn)—EPA(Xl—xl)—e e

(7)

(8)

2. Calculer I'Estimateur Maximum de Vraisemblance (EMV). =" On

va calculer

argmax,_,log L(A|xy,...,x,) = argmax,_, — nA + Y _x;logA

(9)

Soit f(A) := —nA 4 Y ; x;log A et on calcule f'(A) = —n+ Y, xiy et

f'(A) =0 = A =Y,x;/n? Ainsi, 'EMV pour un modéle Poisson

vaut A, (Xy, ..., X,) = X,

Exercice 4.

Une k-coloration d’un graphe est une fonction des sommets du graphe

vers un ensemble de k couleurs. On dit qu’elle est propre si deux som-
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mets adjacents ne regoivent jamais la méme couleur. Un graphe est dit

k-colorable s’il posseéde une k-coloration propre.

Soit G un graphe 3-colorable.

1. Prouver qu’il existe une 2-coloration (non propre) telle qu'aucun
triangle n’est monochromatique (un triangle est monochromatique si
les trois sommets qui le composent recoivent la meme couleur).

I || existe une coloration propre Rouge, Bleu, Vert. On recolorie les sommets

verts en rouge. Chaque triangle contenait déja un sommet rouge et un sommet

bleu avant la recoloration, et c'est toujours le cas aprés.

On considere maintenant ’algorithme suivant, dont le but est de trou-
ver une telle 2-coloration :
On commence avec une 2-coloration arbitraire.
Tant qu’il y a un triangle monochromatique, on choisit unifor-
mément un sommet parmi les trois sommets qui le composent,
et on change sa couleur.
On veut étudier 'espérance du nombre de recolorations avant de s’ar-

réter.

Comme G est 3-colorable, il existe une coloration propre pour {Rouge, Bleu, Vert}
(mais on ne la connait pas). On note R (resp. B, V) I'ensemble des som-

mets colorés rouge (resp. bleu, vert) dans cette 3-coloration.

Considérons maintenant une 2-coloration arbitraire ¢ de G (en rouge

et bleu, disons). Soit m(c) le nombre de sommets de R qui ne sont pas

colorés rouge dans ¢, plus le nombre de sommets de B qui ne sont pas
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colorés bleu dans c.

2. Que dire si m(c) =noum(c) =07

B=" Dans ces cas, aucun triangle n'est monochromatique et on a terminé.

3. En s’inspirant de 1'exemple du cours sur 2-SAT, modéliser 1'évolu-
tion de m(c) par une chaine de Markov sur {0,...,n}. Quel-s sont
le ou les sommet:-s a atteindre pour terminer ?

Pour j € {0,...,n}, que peut-on dire de 'état j par rapport a I'état
n—7j?

15" Supposons m(c) = j # 0,n et regardons le triangle monochromatique

choisi. Sans perte de généralité, on peut supposer qu'il est entiérement rouge.

Avec proba 1/3, on tire le sommet de V et on le recolore (en bleu); cela laisse

m(c) inchangé. Avec proba 1/3, on tire le sommet de B et on le recolore; on

passe a m(c) — 1. Avec proba 1/3, on tire le sommet de R et on le recolore;

on passe de m(c) a m(c) + 1.

On obtient donc la chaine de Markov suivante : pour j # 0,1, avec proba 1/3

on passe a j — 1, avec proba 1/3 on reste sur j, et avec proba 1/3 on passe

a j+1. Pour j = 0 ou n, on reste sur |'état courant avec proba 1. Le but est

d'atteindre le sommet 0 ou le sommet n. La chaine est complétement symétrique

entre ['état j et ['état n — j.

4. Soit hj 'espérance du nombre de recolorations a effectuer pour ter-
miner lorsqu’on part d’une 2-coloration ¢ pour laquelle m(c) = j.
Pour j € {1,...,n — 1}, exprimer h; en fonction de hj_; et hj.

Déterminer hg et h,,.



15" Onahp=0eth,=0 Pourje{l,..., n—1} ona:

1

autrement dit :

3 1
h]' = E + —(l’l]'_l -+ h]'_|_1> .

N

5. Montrer que h; = hjy1 + f(j) pour une certaine fonction f a déter-
miner, avec f(0) = —h.

15 Ona hg=hy+ f(0) = hy — h; = 0 : ok. Par récurrence, on calcule :

3 1 3 1 .
hi = S+ 5(h+hin) = 545+ f(—1) +hjs)
d'ou
1 3 1, 1

donc hj = hjs1 +3+ f(j—1) = hjp1 + f(j) avec f(j) =3+ f(j — 1), et
donc f(j) = 3j — h1.

6. Prouver que h,,, = O(n?). Conclure.

Indication : On pourra utiliser la relation hy = h,_,, obtenue par symé-
trie.
15" Onahy 1 =h,+f(n—1)=0+ f(n—1). Commehy = h,_q et f(n—
1) =3(n—1) — hy, on obtient hy = 3(n —1) —hy d'ou by =3(n—1)/2.



Donc h(]) = I’l]'+1 + 3] — 3(11 — 1)/2. Ainsi,

by = bt L (3= 2 —1) = 043 j— 20D gm0 m))
k=j k=j

d'ou

2
hyjo = M = O(n?).

Comme h,, /5 est le "milieu" de la chaine, c'est le pire cas (on peut vérifier que
c’est le maximum de /) et donc I'espérance du nombre de recolorations est bien

quadratique.

Exercice 5.

Une tour se déplace sur un échiquier de 8 x 8 cases uniformément au
hasard (depuis la case de coordonnées (x,vy), elle peut se déplacer sur
une des cases de l'ensemble {(x',y)|x" = x} U{(x,vi)|ly’ = y}). Au
bout de combien de déplacements en moyenne revient-elle a la case de
départ?

=" On peut modéliser le probléme par une chaine de Markov. Il y a 64 états. La

chaine est apériodique, irréductible et récurrente. On va calculer la probabilité

invariante : sur un graphe G, elle vaut 71(x) = (;TET On en déduit que
14 1
") =1 T w (10)

La tour revient a la case de départ en moyenne en % déplacements, i.e. 64.

Méme question pour un cavalier qui part d"un coin de I’échiquier.
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15" Si v dénote le coin de I'échiquier, on a deg(v) = 2 et on compte que

2|E| =336 d'ou le temps de retour moyen qui vaut 168.
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