L3 — Probabilités (Année 2025/2026) Anne Gagneux & Lison Blondeau-Patissier

TD 12 — Chaines de Markov (distributions stationnaires) & Stats (corrigé)

Exercice 1.
On considere une marche aléatoire sur le graphe suivant (c’est a dire qu’a chaque étape, on choisit le
sommet suivant uniformément au hasard parmi les voisins du sommet courant).

(o)
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1. On suppose que la distribution initiale est 7y = (1,0,0,0,0) (i.e. Xy = 0 avec probabilité 1). Le
vecteur de distribution 71, converge-t-il lorsque n tend vers l'infini ? Si oui, déterminer sa limite.

U™ |3 chaine de Markov associée a la marche aléatoire sur le graphe est irréductible (le graphe est connexe). Elle est aussi apériodique grace au
triangle formé par les états 0,1 et 2. En effet, la période de I'état 0 est le pged de 2 (un aller retour 0 — 1 —0) et 3 (un cycle 0 — 1 —2 —0). Donc
I'état 0 est apériodique. Comme la chaine est irréductible tous les états sont apériodiques. Si on trouve une distribution stationnaire, le théoréme
de convergence nous assurera une convergence vers cette distribution stationnaire. On observe que la distribution 7w = (1/6,1/4,1/4,1/6,1/6) est
stationnaire (on peut la calculer en résolvant le systéme d’équations 1Q = 7t par exemple — on peut remarquer que les états 1 et 2 se comportent
de la méme facon, de méme pour 3 et 4, donc il suffit de considérer un systéme a trois inconnues.). Le théoréme de convergence nous permet de

conclure que 71, — 71 quand n tend vers I'infini.

2. Meéme question si la distribution initiale est 7o = (0, }I, }I, }I, }I)

IS |, réponse est la méme, le théoréme de convergence ne dépend pas de I'état initial.

Exercice 2.

On étudie un modele simple des échanges de molécules de gaz entre deux récipients, et on s’intéresse
a I'évolution du nombre de molécules dans le premier récipient. Soit N le nombre total de molécules
dans les deux récipients. L’échange est modélisé de la facon suivante : si le premier récipient contient
x molécules a l'instant t, alors a I'instant f 4+ 1 il contient x + 1 molécules avec probabilité ng Tetx—1
molécules avec probabilité 5.

1. Décrire ce modéle avec une chaine de Markov, en donnant I'espace des états et la matrice de
transition. Pour N = 3, dessiner la chaine de Markov correspondante.
[l
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Pour N € N, on a les formules suivantes : P;; 1 = %, Pi1 =, P;j =0 sinon.

2. Pour N € N, donner la distribution stationnaire de la chaine de Markov.



I On utilise la propriété des flux : si on a une 2-partition de I'ensemble des états S en S; WS, le « flux sortant » de Sy vers S, est égal au « flux
entrant » de Sy vers Sy lorsque I'on est dans un état d’équilibre (i.e. lorsque I'on suit une distribution stationnaire). Plus formellement :

Y Y=Y ) #()P-

i€S; jeSy €S jeSy
Ici, en regardant une coupe entre i et i + 1 pour 0 <i < N, on sait donc que la distribution stationnaire 7t satisfait :
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Donc pour 0 <i < N, ona m = (l.f:’l)r[o. Mais on sait aussi que Y ; 71; =1, i.e. 7o - ;10 (lfl) =1. On en déduit que myp =2~ N.

3. On suppose qu’a l'instant t = 0, le premier récipient est vide (et le deuxiéme récipient contient
N molécules). On note T < 1 le prochain instant ot le premier récipient est vide. Calculer E [T].
1

IZ On sait que pour une chaine irréductible finie, I1; = ,[i En particulier, pour i =0, on a hy = = 2",
7 7

Exercice 3.

Modéle de Poisson

Le modele de Poisson est I'ensemble {P(A),A > 0}. On rappelle que P(A), pour un certain A > 0,
correspond a la loi donnée par

k
VkeN, Py(X=k) = exp(—)x)%. (1)

Vocabulaire :
— Un estimateur A,, de A est convergent si pour tout A € A, Ay converge vers A en [P)-probabilité,
c’est a dire si Ve > 0,
im Py (|3, — A > €) =0 2)

— Le bias d’estimateur A, de A (tel que E,[A,] < ) est la fonction b(A,,-) : A — R définie comme
b(An,A) = Ep[An] — A (3)

Estimateur moment d’ordre 1

1. Calculer E) [X] et déduire un estimateur de moment AY e

k

EA[X] = D kexp(~A) 3y @
] .

=A (5)

Donc on peut prendre X(,,l)(Xh...,X,,) =X, := %):,(X,-)
2. Quel est le biais de cet estimateur? =5 0on a ]E,\[% Y Xi] = EA[X1] = A donc c’est un estimateur non biaisé.
. Cet estimateur est il consistant? = Oui, car une loi de Poisson admet un moment d’ordre 2 et on conclut par la loi faible
p

des grands nombres (application de Tchebychev)

Estimateur moment d’ordre 2

)

. (2
1. Calculer un autre estimateur )\,(1
m(A) = A2+ A. On a pour tout s > 0

d’aprés I'expression de E) [X?]. B 0n trouve E,[X?] = A(A+1) Soit

m(/\):s<:>/\:wi+57%:<p(s) 6)

On a que ;\(2)(X1,...,X,l) = ¢(% Y X,z) est un estimateur de A.

()

2. Cet estimateur est-il non-biaisé (1e b(;\n ’ )\) = O) ? B ¢ est strictement concave donc par I'inégalité de Jensen,
il vient
< 1 1
EA[A7) = Ealp( LX) < 9(Er . LX) = 9(A* +1) = A @)
1 1

Donc E, [;\i,z)] — A <0, cet estimateur est biaisé.



Estimateur Maximum de Vraisemblance
1. Calculer la vraisemblance du modeéle. 1=

& —nA /\):I ti
L(/\‘Xlr---/xn):EP,\(Xi:Xi):E ﬂ (8)
2. Calculer I’Estimateur Maximum de Vraisemblance (EMV). 55 0n va calculer
argmax, _,log L(A[x1,...,x,) = argmax,_, — nA + Zx, log A 9)
i

Soit f(A) := —nA+ Y xilog A et on calcule f'(A) = —n+Y;xi} et f/(A) =0 = A =Y, x;/n? Ainsi, 'EMV pour un modéle Poisson
vaut A,(Xy,..., X,) = X,.

Exercice 4.

Une k-coloration d’un graphe est une fonction des sommets du graphe vers un ensemble de k couleurs.
On dit qu’elle est propre si deux sommets adjacents ne regoivent jamais la méme couleur. Un graphe
est dit k-colorable s'il possede une k-coloration propre.

Soit G un graphe 3-colorable.

1. Prouver qu'il existe une 2-coloration (non propre) telle qu’aucun triangle n’est monochromatique
(un triangle est monochromatique si les trois sommets qui le composent regoivent la meme couleur).
IS || existe une coloration propre Rouge, Bleu, Vert. On recolorie les sommets verts en rouge. Chaque triangle contenait déja un sommet rouge

et un sommet bleu avant la recoloration, et c'est toujours le cas aprés.

On considére maintenant 1’algorithme suivant, dont le but est de trouver une telle 2-coloration :
On commence avec une 2-coloration arbitraire.
Tant qu’il y a un triangle monochromatique, on choisit uniformément un sommet parmi les
trois sommets qui le composent, et on change sa couleur.

On veut étudier I'espérance du nombre de recolorations avant de s’arréter.

Comme G est 3-colorable, il existe une coloration propre pour {Rouge, Bleu, Vert} (mais on ne la
connait pas). On note R (resp. B, V) I'ensemble des sommets colorés rouge (resp. bleu, vert) dans cette
3-coloration.

Considérons maintenant une 2-coloration arbitraire ¢ de G (en rouge et bleu, disons). Soit m(c) le
nombre de sommets de R qui ne sont pas colorés rouge dans c, plus le nombre de sommets de B qui
ne sont pas colorés bleu dans c.

2. Que dire si m(c) =noum(c) =07

U= Dans ces cas, aucun triangle n'est monochromatique et on a terminé.

3. En s’inspirant de I'exemple du cours sur 2-SAT, modéliser 1’évolution de m(c) par une chaine de
Markov sur {0,...,n}. Quel-s sont le ou les sommet-s a atteindre pour terminer ?
Pour j € {0,...,n}, que peut-on dire de l'état j par rapport a 'état n — j?
= Supposons m(c) = j # 0,1 et regardons le triangle monochromatique choisi. Sans perte de généralité, on peut supposer qu'il est entiérement

rouge. Avec proba 1/3, on tire le sommet de V et on le recolore (en bleu); cela laisse m(c) inchangé. Avec proba 1/3, on tire le sommet de B et
on le recolore ; on passe a m(c) — 1. Avec proba 1/3, on tire le sommet de R et on le recolore ; on passe de m(c) a m(c)+ 1.

On obtient donc la chaine de Markov suivante : pour j # 0,7, avec proba 1/3 on passe a j — 1, avec proba 1/3 on reste sur j, et avec proba 1/3
on passe a j+ 1. Pour j = 0 ou 1, on reste sur I'état courant avec proba 1. Le but est d'atteindre le sommet 0 ou le sommet 1. La chaine est

complétement symétrique entre I'état j et I'état n — j.

4. Soit h; 'espérance du nombre de recolorations a effectuer pour terminer lorsqu’on part d’une
2-coloration ¢ pour laquelle m(c) = j. Pour j € {1,...,n — 1}, exprimer h; en fonction de h; 1 et
hji1. Déterminer ho et hy,.

I Onahy=0eth, =0. Pourje{l,...,n—1},ona:

h,': (1+h1;1+1+h/+1+hj+1)

W[ =

autrement dit :

hj=

1
j + 5 (i + i)

N W



5. Montrer que h; = hj;1 + f(j) pour une certaine fonction f a déterminer, avec f(0) = —h;.
IS° Ona g =hy + f(0) = hy —hy =0 : ok. Par récurrence, on calcule :

3 1 3 1 .
hi = 54 5t i) = 54 S+ f( = 1)+ hj)

dou 1 3 1 1
Eh/ = §+§f(j—1)+§hm
donc hj = hjq +3+ f(j —1) = hjsq + f(j) avec f(j) =3+ f(j — 1), et donc f(j) = 3j — 1.

6. Prouver que h,,, = O(n?). Conclure.

Indication : On pourra utiliser la relation hy = h,_1, obtenue par symétrie.

I=5" Onaly g =hy+ f(n—1) =0+ f(n—1). Comme hy = h, 1 et f(n—1) = 3(1n — 1) — hy, on obtient hy = 3(n —1) — hy d’ott hy = 3(n—1)/2.
Donc h(j) = hji1 +3j —3(n —1)/2. Ainsi,

" :h'1+:i(3f‘ %(n_l)) :0+3Z§j_ 3(n712)(n7j) :S(n—1+2j)(n7j) _ 3(n712)(n*]') :3<n;j)(n_1+j_ (n—1)) = 3j(n2ff)
= k=]
d'ou
2
hn/2: 3(n2/2> :O(n2>'

Comme 1,5 est le "milieu" de la chaine, c'est le pire cas (on peut vérifier que c'est le maximum de /;) et donc I'espérance du nombre de

recolorations est bien quadratique.

Exercice 5.

Une tour se déplace sur un échiquier de 8 x 8 cases uniformément au hasard (depuis la case de
coordonnées (x, 1), elle peut se déplacer sur une des cases de I'ensemble {(x, y)|x" = x} U{(x,yi)|y' =
y}). Au bout de combien de déplacements en moyenne revient-elle a la case de départ?

I On peut modéliser le probléme par une chaine de Markov. Il y a 64 états. La chaine est apériodique, irréductible et récurrente. On va calculer

la probabilité invariante : sur un graphe G, elle vaut 7(x) = ‘;Tg’ On en déduit que
14 1
S A ver i (10)

La tour revient a la case de départ en moyenne en % déplacements, i.e. 64.
Méme question pour un cavalier qui part d’un coin de 1’échiquier.
I Si v dénote le coin de I'échiquier, on a deg(v) = 2 et on compte que 2|E| = 336 d'ou le temps de retour moyen qui vaut 168.
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