
L3 – Probabilités (Année 2025/2026) Anne Gagneux & Lison Blondeau-Patissier

TD 12 – Chaînes de Markov (distributions stationnaires) & Stats (corrigé)

Exercice 1.
On considère une marche aléatoire sur le graphe suivant (c’est à dire qu’à chaque étape, on choisit le
sommet suivant uniformément au hasard parmi les voisins du sommet courant).
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1. On suppose que la distribution initiale est π0 = (1, 0, 0, 0, 0) (i.e. X0 = 0 avec probabilité 1). Le
vecteur de distribution πn converge-t-il lorsque n tend vers l’infini ? Si oui, déterminer sa limite.

☞ La chaîne de Markov associée à la marche aléatoire sur le graphe est irréductible (le graphe est connexe). Elle est aussi apériodique grâce au

triangle formé par les états 0, 1 et 2. En effet, la période de l’état 0 est le pgcd de 2 (un aller retour 0 − 1 − 0) et 3 (un cycle 0 − 1 − 2 − 0). Donc

l’état 0 est apériodique. Comme la chaîne est irréductible tous les états sont apériodiques. Si on trouve une distribution stationnaire, le théorème

de convergence nous assurera une convergence vers cette distribution stationnaire. On observe que la distribution π = (1/6, 1/4, 1/4, 1/6, 1/6) est

stationnaire (on peut la calculer en résolvant le système d’équations πQ = π par exemple – on peut remarquer que les états 1 et 2 se comportent

de la même façon, de même pour 3 et 4, donc il suffit de considérer un système à trois inconnues.). Le théorème de convergence nous permet de

conclure que πn → π quand n tend vers l’infini.

2. Même question si la distribution initiale est π0 = (0, 1
4 , 1

4 , 1
4 , 1

4 ).
☞ La réponse est la même, le théorème de convergence ne dépend pas de l’état initial.

Exercice 2.
On étudie un modèle simple des échanges de molécules de gaz entre deux récipients, et on s’intéresse
à l’évolution du nombre de molécules dans le premier récipient. Soit N le nombre total de molécules
dans les deux récipients. L’échange est modélisé de la façon suivante : si le premier récipient contient
x molécules à l’instant t, alors à l’instant t + 1 il contient x + 1 molécules avec probabilité N−x

N et x − 1
molécules avec probabilité x

N .

1. Décrire ce modèle avec une chaîne de Markov, en donnant l’espace des états et la matrice de
transition. Pour N = 3, dessiner la chaîne de Markov correspondante.

☞
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Pour N ∈ N, on a les formules suivantes : Pi,i+1 = N−i
N , Pi,i−1 = i

N , Pi,j = 0 sinon.

2. Pour N ∈ N, donner la distribution stationnaire de la chaîne de Markov.

1



☞ On utilise la propriété des flux : si on a une 2-partition de l’ensemble des états S en S1 ⊎ S2, le « flux sortant » de S1 vers S2 est égal au « flux
entrant » de S2 vers S1 lorsque l’on est dans un état d’équilibre (i.e. lorsque l’on suit une distribution stationnaire). Plus formellement :

∑
i∈S1

∑
j∈S2

π(i)Pi,j = ∑
i∈S1

∑
j∈S2

π(j)Pj,i .

Ici, en regardant une coupe entre i et i + 1 pour 0 ≤ i < N, on sait donc que la distribution stationnaire π satisfait :

πi · N−i
N = πi+1

i+1
N i.e. πi+1 = N−i

i+1 πi

= π0 · ∏i
j=0

N−j
j+1

= ( N
i+1)π0

Donc pour 0 ≤ i ≤ N, on a πi = ( N
i+1)π0. Mais on sait aussi que ∑i πi = 1, i.e. π0 · ∑N

i=0 (
N

i+1) = 1. On en déduit que π0 = 2−N .

3. On suppose qu’à l’instant t = 0, le premier récipient est vide (et le deuxième récipient contient
N molécules). On note T ≤ 1 le prochain instant où le premier récipient est vide. Calculer E [T].

☞ On sait que pour une chaîne irréductible finie, hi =
1

πi
. En particulier, pour i = 0, on a h0 = 1

π0
= 2n.

Exercice 3.
Modèle de Poisson
Le modèle de Poisson est l’ensemble {P(λ), λ > 0}. On rappelle que P(λ), pour un certain λ > 0,
correspond a la loi donnée par

∀k ∈ N, Pλ(X = k) = exp(−λ)
λk

k!
. (1)

Vocabulaire :
— Un estimateur λ̃n de λ est convergent si pour tout λ ∈ Λ, λ̃n converge vers λ en Pλ-probabilité,

c’est à dire si ∀ϵ > 0,
lim

n
Pλ(|λ̃n − λ| ≥ ϵ) = 0 (2)

— Le bias d’estimateur λ̃n de λ (tel que Eλ[λ̃n] < ∞) est la fonction b(λ̃n, ·) : Λ → R définie comme

b(λ̃n, λ) = Eλ[λ̃n]− λ (3)

Estimateur moment d’ordre 1

1. Calculer Eλ[X] et déduire un estimateur de moment λ̃
(1)
n ☞

Eλ [X] = ∑
k

k exp(−λ)
λk

k!
(4)

= λ (5)

Donc on peut prendre λ̃
(1)
n (X1, . . . , Xn) = X̄n := 1

n ∑i(Xi)

2. Quel est le biais de cet estimateur ? ☞ On a Eλ [
1
n ∑i Xi ] = Eλ [X1] = λ donc c’est un estimateur non biaisé.

3. Cet estimateur est il consistant ? ☞ Oui, car une loi de Poisson admet un moment d’ordre 2 et on conclut par la loi faible

des grands nombres (application de Tchebychev)

Estimateur moment d’ordre 2

1. Calculer un autre estimateur λ̃
(2)
n d’après l’expression de Eλ[X2]. ☞ On trouve Eλ [X2] = λ(λ + 1) Soit

m(λ) = λ2 + λ. On a pour tout s > 0

m(λ) = s ⇐⇒ λ =

√
1
4
+ s − 1

2
= ϕ(s) (6)

On a que λ̃(2)(X1, . . . , Xn) = ϕ( 1
n ∑i X2

i ) est un estimateur de λ.

2. Cet estimateur est-il non-biaisé (i.e. b(λ̃(2)
n , λ) = 0) ? ☞ ϕ est strictement concave donc par l’inégalité de Jensen,

il vient

Eλ [λ̃
(2)
n ] = Eλ [ϕ(

1
n ∑

i
X2

i )] < ϕ(Eλ
1
n ∑

i
X2

i ) = ϕ(λ2 + λ) = λ (7)

Donc Eλ [λ̃
(2)
n ]− λ < 0, cet estimateur est biaisé.
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Estimateur Maximum de Vraisemblance
1. Calculer la vraisemblance du modèle. ☞

L(λ|x1, . . . , xn) =
n

∏
i=1

Pλ(Xi = xi) = e−nλ λ∑i xi

x1 ! . . . xn !
. (8)

2. Calculer l’Estimateur Maximum de Vraisemblance (EMV). ☞ On va calculer

argmaxλ>0 log L(λ|x1, . . . , xn) = argmaxλ>0 − nλ + ∑
i

xi log λ (9)

Soit f (λ) := −nλ + ∑i xi log λ et on calcule f ′(λ) = −n + ∑i xi
1
λ et f ′(λ) = 0 =⇒ λ = ∑i xi/n ? Ainsi, l’EMV pour un modèle Poisson

vaut λ̂n(X1, . . . , Xn) = X̄n.

Exercice 4.
Une k-coloration d’un graphe est une fonction des sommets du graphe vers un ensemble de k couleurs.
On dit qu’elle est propre si deux sommets adjacents ne reçoivent jamais la même couleur. Un graphe
est dit k-colorable s’il possède une k-coloration propre.

Soit G un graphe 3-colorable.

1. Prouver qu’il existe une 2-coloration (non propre) telle qu’aucun triangle n’est monochromatique
(un triangle est monochromatique si les trois sommets qui le composent reçoivent la meme couleur).

☞ Il existe une coloration propre Rouge, Bleu, Vert. On recolorie les sommets verts en rouge. Chaque triangle contenait déjà un sommet rouge

et un sommet bleu avant la recoloration, et c’est toujours le cas après.

On considère maintenant l’algorithme suivant, dont le but est de trouver une telle 2-coloration :
On commence avec une 2-coloration arbitraire.
Tant qu’il y a un triangle monochromatique, on choisit uniformément un sommet parmi les
trois sommets qui le composent, et on change sa couleur.

On veut étudier l’espérance du nombre de recolorations avant de s’arrêter.

Comme G est 3-colorable, il existe une coloration propre pour {Rouge, Bleu, Vert} (mais on ne la
connaît pas). On note R (resp. B, V) l’ensemble des sommets colorés rouge (resp. bleu, vert) dans cette
3-coloration.
Considérons maintenant une 2-coloration arbitraire c de G (en rouge et bleu, disons). Soit m(c) le
nombre de sommets de R qui ne sont pas colorés rouge dans c, plus le nombre de sommets de B qui
ne sont pas colorés bleu dans c.

2. Que dire si m(c) = n ou m(c) = 0 ?
☞ Dans ces cas, aucun triangle n’est monochromatique et on a terminé.

3. En s’inspirant de l’exemple du cours sur 2-SAT, modéliser l’évolution de m(c) par une chaîne de
Markov sur {0, . . . , n}. Quel·s sont le ou les sommet·s à atteindre pour terminer ?
Pour j ∈ {0, . . . , n}, que peut-on dire de l’état j par rapport à l’état n − j ?

☞ Supposons m(c) = j ̸= 0, n et regardons le triangle monochromatique choisi. Sans perte de généralité, on peut supposer qu’il est entièrement
rouge. Avec proba 1/3, on tire le sommet de V et on le recolore (en bleu) ; cela laisse m(c) inchangé. Avec proba 1/3, on tire le sommet de B et
on le recolore ; on passe à m(c)− 1. Avec proba 1/3, on tire le sommet de R et on le recolore ; on passe de m(c) à m(c) + 1.

On obtient donc la chaîne de Markov suivante : pour j ̸= 0, n, avec proba 1/3 on passe à j − 1, avec proba 1/3 on reste sur j, et avec proba 1/3

on passe à j + 1. Pour j = 0 ou n, on reste sur l’état courant avec proba 1. Le but est d’atteindre le sommet 0 ou le sommet n. La chaîne est

complètement symétrique entre l’état j et l’état n − j.

4. Soit hj l’espérance du nombre de recolorations à effectuer pour terminer lorsqu’on part d’une
2-coloration c pour laquelle m(c) = j. Pour j ∈ {1, . . . , n − 1}, exprimer hj en fonction de hj−1 et
hj+1. Déterminer h0 et hn.

☞ On a h0 = 0 et hn = 0. Pour j ∈ {1, . . . , n − 1}, on a :

hj =
1
3
(1 + hj−1 + 1 + hj + 1 + hj+1)

autrement dit :
hj =

3
2
+

1
2
(hj−1 + hj+1) .
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5. Montrer que hj = hj+1 + f (j) pour une certaine fonction f à déterminer, avec f (0) = −h1.
☞ On a h0 = h1 + f (0) = h1 − h1 = 0 : ok. Par récurrence, on calcule :

hj =
3
2
+

1
2
(hj−1 + hj+1) =

3
2
+

1
2
(hj + f (j − 1) + hj+1)

d’où
1
2

hj =
3
2
+

1
2

f (j − 1) +
1
2

hj+1

donc hj = hj+1 + 3 + f (j − 1) = hj+1 + f (j) avec f (j) = 3 + f (j − 1), et donc f (j) = 3j − h1.

6. Prouver que hn/2 = O(n2). Conclure.
Indication : On pourra utiliser la relation h1 = hn−1, obtenue par symétrie.

☞ On a hn−1 = hn + f (n− 1) = 0+ f (n− 1). Comme h1 = hn−1 et f (n− 1) = 3(n− 1)− h1, on obtient h1 = 3(n− 1)− h1 d’où h1 = 3(n− 1)/2.
Donc h(j) = hj+1 + 3j − 3(n − 1)/2. Ainsi,

hj = hn +
n−1

∑
k=j

(3j − 3
2
(n − 1)) = 0 + 3

n−1

∑
k=j

j − 3(n − 1)(n − j)
2

= 3
(n − 1 + j)(n − j)

2
− 3(n − 1)(n − j)

2
= 3

(n − j)
2

(n − 1 + j − (n − 1)) =
3j(n − j)

2

d’où

hn/2 =
3(n/2)2

2
= O(n2) .

Comme hn/2 est le "milieu" de la chaîne, c’est le pire cas (on peut vérifier que c’est le maximum de hj) et donc l’espérance du nombre de

recolorations est bien quadratique.

Exercice 5.
Une tour se déplace sur un échiquier de 8 × 8 cases uniformément au hasard (depuis la case de
coordonnées (x, y), elle peut se déplacer sur une des cases de l’ensemble {(x′, y)|x′ = x}∪ {(x, yi)|y′ =
y}). Au bout de combien de déplacements en moyenne revient-elle à la case de départ ?
☞ On peut modéliser le problème par une chaine de Markov. Il y a 64 états. La chaine est apériodique, irréductible et récurrente. On va calculer
la probabilité invariante : sur un graphe G, elle vaut π(x) = degv

2|E| . On en déduit que

π(x) =
14

14 · 64
=

1
64

(10)

La tour revient à la case de départ en moyenne en 1
π déplacements, i.e. 64.

Même question pour un cavalier qui part d’un coin de l’échiquier.
☞ Si v dénote le coin de l’échiquier, on a deg(v) = 2 et on compte que 2|E| = 336 d’où le temps de retour moyen qui vaut 168.
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