L3 — Probabilités (Année 2025/2026)

Lison Blondeau-Patissier & Anne Gagneux

TD 11 — Chaines de Markov (récurrence et

transience) (corrigé)

Exercice 1. Propositions utiles
Le but de cet exercice est de démontrer les propriétés observées sur les

exemples de chaines de Markov.

1. Redémontrer la propriété suivante vue en cours : «si un état i est
périodique de période d et qu’il communique avec j, alors j est aussi de
période d. » Autrement dit, la périodicité est une propriété de classe.
Que dire de la périodicité d'un état qui posseéde une boucle sur
lui-méme?

IS Siiet j communiquent, alors il existe deux entiers 11 et m tels que pgg) >0

et p](-;n) > 0.

Puis, notons R; = {k € N | pg? > 0} (et de méme pour R;). Par hypothése,

on a d = PGCD(R;). Notons d; = PGCD(R;).

Pour tout k € R;, on a p]<,7+k+n

Mais k € R; = 2k € R;, donc on a aussi m + 2k +n € R;. Alors

) > p](,T)ng,I;)pl(,?> > 0, doncm +k+n € R;

dilm 4+ k 4+ n et dj|m 4 2k 4 n, donc d;|k. Puisque cela est vrai pour tout
k € R;, on obtient que d;|PGCD(R;).

Symmétriquement, on montre que d|d;, donc d; = d.

Un état qui posséde une boucle sur lui-méme est forcément apériodique car il
existe un chemin de lui-méme a lui-méme de longueur 1.
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2. Redémontrer la propriété suivante vue en cours : « la récurrence est
une propriété de classe : si i et | communiquent et que i est récurrent,
alors j est aussi récurrent. Par conséquent, la transience est également une
propriété de classe. »

1= Comme 1 et j communiquent, on a pg;-l) > 0 et p](f?) > (0 pour certains

entiers 11 et 5. On en déduit :

ZP§§]+H+H2) > ZP;ZZ)PE,?)PE,?) _ p](gz)pl(j]m sz(:l) — foo .

3. On regroupe les états d’une chaine de Markov en classes d’équiva-
lence pour la relation d’accessibilité : deux états i et j sont dans la
méme classe si et seulement si i est accessible depuis j et j est ac-
cessible depuis i. Une classe C d’états est dite close ou fermée si pour
tout i € C et pour tout j ¢ C,on a P;; = 0 (ou (P;;);; est la matrice
de transition). Autrement dit, il n'y a aucune aréte sortant de cette
classe. Démontrer que :

a. Une classe non close est transitoire.

b. Une classe close finie est récurrente.

En particulier, pour les chaines de Markov a espace d’états fini, les
classes récurrentes sont les classes closes, et les classes transitoires
sont les classes non closes.

=" a. Soit C une classe non-close. Il existe donci € C et j & C tels que p;; # 0.

Or i et j ne communiquent pas car ils ne sont pas dans les mémes classes, donc 1



n'est pas accessible depuis j. Donc pour tout 11, P {X,, = i|X; = j} = 0 (o0 X,

décrit le n-iéme état dans une marche sur la chaine de Markov). Soit T; le temps

d'atteinte de 7, alors on déduit de ce qui précede que P {T; < oo|X; = j} = 0.

Finalement, P{T; = 40|Xy =i} > P{Ti = 40|Xy =1, X1 = j} P{X1 = j|Xo =i} =
1-p;; > 0. Cela prouve que i est transitoire, et donc que C I'est.

b. On considére maintenant une classe C close finie. Alors pour tout i € C, si

on part de 7, la chaine reste dans C. On note N; le nombre de passages en |'état

j.Ona:

P{ZNj:oo|X0:i}:1.

jec
Or cette somme a un nombre fini de termes, donc on en déduit que P {3] eC, N; = co| Xy =
1. Si on suppose que tout j € C est transitoire, on aboutit a une contradiction,

donc tous les j sont récurrents. Ainsi, toute classe finie close est récurrente.

4. Montrer que si 7t est une loi de probabilité stationnaire et si i est un

état transitoire, alors 7t(i) = 0.

Indication : on pourra montrer d’abord les points suivants :

— x est transitoire ssi E [Ny|Xo = y] < oo pour tout état y,

— Si x est transitoire, alors (Q"),x — 0 quand n tend vers 'infini, pour

tout état y (ot Q est la matrice de transition de la chaine).

=" Soit 7T une loi de probabilité stationnaire et i un état transitoire. 71 vérifie
pour tout 1, 7Tp" = 71 donc 71; = ) ; njp](-?).
Or si i est transitoire, p(. tend vers 0. En effet, 7 transitoire ssi P {N; = 00| Xy = i} =
0 par définition. Or P {N; = oo| Xy =i} > P {N; = 00| Xy = j} pour tout état

j (chaine sans mémoire), d'ou E [N;| Xy = j] < oo. Il s’ensuit que p]-j; — 0.
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On peut inverser série et limite par convergence dominée car |p](7)] < 1 et

-7t = 1; on déduit alors 77; = 0.
7%

Exercice 2. Examples
On dispose de trois chaines de Markov définies par les matrices de

transition suivantes :

(0 2/3 0 1/3\

2/3 0 1/3 1/2 1/4 1/4
0O 0 1/2 1/2

A=11/4 1/2 1/4 B = C=10 1/2 1/2
1/4 0 0 3/4

1/2 0 1/2 1/4 0 3/4

\0001/

Pour chacune d’entre elles :
1. Donner sa représentation graphique.
2. Partitionner les états en composantes irréductibles.
. Pour chaque état, dire s’il est transient ou récurrent.

3
4. Pour chaque état, dire s’il est périodique ou apériodique.
5. Donner la distribution stationnaire.

6

. Pour chaque état, donner le temps de retour moyen.

A 2. Il'y a une composante fortement connexe fermée C; = {1,3} et une
composante fortement connexe non fermée C, = {2}.
3. Pour I'état 1, on a Yuq7i; = %—i— %Z‘t’il% = 1, donc 1 est
récurrent.

A t
De méme, pour 3 a ) ;> 1’5,3 = %4—% X % X Yo (%) = 1, donc
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3 est récurrent.
Enfin, I'état 2 est transient.

4. La chaine est apériodique (car la diagonale de la matrice de transition
est non nulle).

5. La distribution stationnaire, i.e. |'unique mesure de probabilité inva-

riante, est 7T = (2,0, %).

6. Par le théoréeme du cours, on a, pour tout x, 7t(x) = = (1T). On
X X

obtient E1(T1) = g, Ez(Tz) = 00 et E3(T3) = g
B 2. Il y a une composante fortement connexe fermée C; = {4} et une
composante fortement connexe non fermée C; = {1,3,3}.

3. L'état 4 est récurrent. Les états 2, 3 et 4 sont transients.

4. |'état 4 est apériodique. Les états 2, 3 et 4 sont périodiques de

période 3.
5. On calcule 7T = (0,0,0,1) (et 4 est un état absorbant).
6. On en déduit E4(Ty) =1 et Eq(Th) = Ex(To) = E5(T3) = oo.
C 2. La chaine est irréductible : tous les états communiquent.
3. Tous les états sont récurrents.
4. Tous les états sont apériodiques.
5. Le distribution stationnaire est T = (2,1,%) (on peut la calculer
avec un pivot de Gauss).
6. On en déduit E1(Ty) = £, Ex(T) =7 et E3(T3) = %.
Exercice 3. Récurrence et Transience

1. Soit S = {0,1,...,n} et 0 < p < 1. On considere M; la chaine de
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Markov de matrice de transition P donnée par :

)
p siy=x-+1
1 siy-
pour0 <x<mn, P(x,y)={ 1—p siy=0 et P(n,y) =
0 sinor
0 sinon

\

Dessiner le graphe associé a M;. Quels sont ses états récurrents et
ses états transients?
15" (Faire un dessin au tableau.) On a deux classes d'équivalence (deux sous-
chaines irréductibles) dans cette chaine. La premiére contient les états {0,1,...,1n —
1} et l'autre I'état n. L'état n est récurrent, car P {T, < co| Xy =n} = 1. Les
autres états sont soit tous récurrents, soit tous transients (car ils sont dans la

méme composante fortement connexe du graphe). Etudions I'état n — 1. On a

P{Tn_l <OO|X0:TI—1} SP{X1:O‘X():7Z—1}

< 1.

Les états O 3 n — 1 sont donc transients.

2. Soit S ={1,...,6}. Compléter la matrice suivante pour qu’elle cor-



responde a la matrice de transition d’une chaine de Markov.

(12 . 0 0 o0 o \
2/3 0 0 0 0
0 0 0 7/8 0
M =
1/4 1/4 0 . 1/4 1/4
0 0 3/4 0 . 0

\ o 1/5 0 1/5 1/5 . )

Déterminer quels sont ses états transitoires et récurrents.

I On compléte avec

(1/2 1/2 0 0 0 0 \
1/3 2/3 0 0 0 0
0 O 1/8 0 7/8 0
M =
1/4 1/4 0 0 1/4 1/4
0 0O 3/4 0 1/4 O

\0 1/5 0 1/5 1/5 2/5/

(Faire un dessin au tableau.) On voit qu'il y a deux composantes fortement
connexes fermées (avec aucune arréte sortante) qui sont C; = {1,2} et Cy =
{3,5}. L'ensemble {4,6} est aussi fortement connexe mais n'est pas fermé. Si
on regroupe ces composantes connexes et qu'on dessine |'arbre associé, |'en-
semble {4,6} est la racine de I'arbre, et les noeuds C; et C, sont ses fils et sont

des feuilles de I'arbre. On pourrait s'arréter 1a : comme le graphe est fini, on sait



que les états dans les feuilles sont récurrents et les autres sont transients.
On va quand méme faire la démonstration.
— Comme la composante C; est fermée et fortement connexe, la chaine
de Markov (X;,) d'état initial 1 ou 2 et de matrice de transition M est

la méme que la chaine de Markov de méme état initial et de matrice de

1/2 1/2
transition , sur I'ensemble d’états {1,2}. Cette chaine est

1/3 2/3

irréductible et a un nombre fini d'états, donc ses états sont récurrents.
— On montre de méme que les états de C, sont récurrents.
— Montrons maintenant que I'état 4 n'est pas récurrent (comme il commu-
nique avec 6, cela montrera aussi que 6 est transitoire). Ona P {T, < co| Xy =4} <

P{X; =6|Xo =4} <1, donc 4 et 6 sont transitoires.

3. Montrer que la chaine de Markov précédente contient deux en-
sembles fermés (i.e. aucun état en dehors de 'ensemble n’est ac-
cessible depuis un état dans 1’ensemble) irréductibles non vides C;

et C,. Calculer, pour i € {1,2}, la probabilité

P {X, € C; & partir d"un certain temps | Xo = 6} .

=" On a déja défini a la question précédents deux ensembles non vides Cy et
C, fermés et irréductibles. Calculons la probabilité que X, € C; & partir d'un
certain temps, en partant de 6. Comme C; est fermé, une suite qui entre dans
Cy n'en ressortira plus. De méme, une telle suite ne peut pas rentrer dans C,
(sinon elle n'en sortirait plus pour aller dans C;). Donc une telle suite oscille

entre 4 et 6 puis fini par rentrer dans C;. On partitionne ces suites en fonction
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de l'instant k du dernier passage en 6 (un tel instant existe car on part de 6).
Aprés ce dernier passage en 6, la suite ira soit directement en 2, soit en 4 puis

en 1 ou 2. On obtient :
. o : 1 1
P {X, € C; a partir d'un certain temps | Xo =6} = ) P{X; =6} x 5 + 5
k

3
= — P{X,=6}.
10 sz: { k }
De méme, en inversant les roles de C; et C, on a:

1 1 1
P {X, € C; a partir d'un certain temps | Xo = 6} = Zk:P{Xk =6} X (5 + 5 % Z_L)

5

Pour finir le calcul, il faut calculer }; P{X; = 6}. On peut éviter un calcul

direct en remarquant que
P {X, € C;y a partir d'un certain temps | Xo = 6} + P {X,, € C; a partir d'un certain tem

En effet, on sait qu'une suite qui rentre dans C; ou C, n'en ressort jamais. On
a donc trois possibilités, la suite rentre dans Cy, ou bien elle rentre dans C,, ou
bien elle reste tout le temps dans {4,6}. Mais si X, € {4,6} pour tout n, alors
Ng ou Ny est infini (nombre de passage en 4 ou 6). Or, on a vu que 4 et 6 sont

transitoires, donc on sait qu'un tel événement arrive avec probabilité 0.

Par conséquent, Y, P {Xy = 6} (3/10+5/20) = 1. On obtient } , P { Xy = 6} =



20/11, d'ou :

P {X, € C; a partir d'un certain temps | Xo = 6} = 6/11

P {X, € C, a partir d'un certain temps | Xo =6} = 5/11.

Exercice 4. Chaines de Markov

Considérons la marche aléatoire simple sur 2 d qui se déplace avec pro-
babilité 1/2d vers chacun de ses 24 voisins dans ka grille. Cette marche

est clairement irréductible.

Lﬁ
0 £

o
3:

Lﬁuﬁﬁ:m = - - ol
ekl 5 ,

f %
HiHEH B e
B
{4
jiasasinn=d

ﬁgi e
2

Al

A

A random walk in Z2 A random walk in Z3

(10000 steps, Wikipedia) (10000 steps, Wikipedia)
1. Pour d = 1, est elle récurrente ? récurrente positive ?

15" [Déja fait dans les TDs précédents]

Soit (X)), la chaine de Markov associée a la marche aléatoire sur Z. La
chaine est irréductible, il suffit de montrer que O est récurrent. On va utiliser

la caractérisation suivante : x est récurrent ssi y_,, P"(x, x) = o0.
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La chafne est de période 2 donc P?"1(0,0) = 0.

P2(0,0) = (2”> < (1)

n 22n

(on choisit 1 étapes vers la droite parmi 21, les n restantes sont forcément

vers la gauche).

La formule de Stirling n! ~ v/27mtn (%)n donne

1

N

P*"(0,0) ~ (2)

La série }_,, P?"(0,0) diverge.
Pour montrer que la chaine de Markov est récurrente nulle, on peut par
exemple faire la méthode des coupes (on aurait alors 71(n)t = 7(n+1)3

soit 7T constante, ce qui en sommant sum les n donne 7T = 0)

Pour d = 2, est elle récurrente ? récurrente positive ?

Indice : considérer une décomposition de la marche en deux marches indé-
pendantes

ISy

Cas d=2

L'idée est de projeter sur les premiére et seconde bissectrices de pente £1.
On change donc de coordonnées. On suppose qu'on était dans la base or-
thonormée = (i, j ) et on fixe deux nouveaux vecteurs :

— 1 — —
— -y (77)
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-
(7 =7)
Et on appelle ' = (i, 7).

N|—=

Aussi un point de coordonnées (x,v) dans la base a des coordonnées (i +
j,j — 1) dans la base .

Les 4 mouvements possibles deviennent donc :

— (+1,0)(+1,-1)

— (=1,0)(=1,+1)
— (0, +1)(+1,+1)
— (0,~1)(~1,-1)
On obtient donc un produit cartésien de deux variables aléatoires indépen-
dantes. On a donc deux marches aléatoires sur Z indépendantes. C'est donc

une marche aléatoire récurrente.

Dans le cas d = 3, pour tout n, montrer que

rse-0- £ (V)(0)

r+s+t=n

ou S; est 'emplacement de la marche au temps 1.

=

Cas d=3

Le nombre d'étape pour revenir a |'origine est 2n pour un certain n € N.
Dans le cas de 23 de tels chemins doivent aller 7 fois vers le haut, 7 fois

vers le bas, t fois & gauche, t fois a droite, s fois devant et s fois vers |'arriére
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et tel que r +s+t = n. Alors

4. Montrer que

Son =0 =

r+s+t=n

=)

r,s,t

o0

)

2n)! 1

(rls!t!)2 62
(2n)! (n))? 1

()

7,5,t

(r1s!th2 (n!)2 62

(n!)? 1

L siien

ZSZn:O<°°

n=0

et conclure pour le cas d = 3.

ISy

On peut remarquer que pour n = 3m, on a

Il suit

(

3m
r,s,t

) <

3m
m, m, m

3m \ 1
22 Z <r,s,t)??

r+s+t=n

z+s+t:n

—(1/3+1/3+1/3)1=1

(3)

(4)

(5)

(6)

(7)



Par ailleurs,
P%"(0,0) =

Comparaison similaire pour P"~%(0,0)

On conclut par

Y P*(0,0) 2 Po"=24(0,0) < ZCPW (0,0) <

14

(8)

(9)



