
L3 – Probabilités (Année 2025/2026) Lison Blondeau-Patissier & Anne Gagneux

TD 11 – Chaînes de Markov (récurrence et transience) (corrigé)

Exercice 1. Propositions utiles
Le but de cet exercice est de démontrer les propriétés observées sur les exemples de chaînes de Markov.

1. Redémontrer la propriété suivante vue en cours : « si un état i est périodique de période d et qu’il
communique avec j, alors j est aussi de période d. » Autrement dit, la périodicité est une propriété de
classe. Que dire de la périodicité d’un état qui possède une boucle sur lui-même ?

☞ Si i et j communiquent, alors il existe deux entiers n et m tels que p(n)i,j > 0 et p(m)
j,i > 0.

Puis, notons Ri = {k ∈ N | p(k)i,i > 0} (et de même pour Rj). Par hypothèse, on a d = PGCD(Ri). Notons dj = PGCD(Rj).

Pour tout k ∈ Ri, on a p(m+k+n)
j,j ≥ p(m)

j,i p(k)i,i p(n)i,j > 0, donc m + k + n ∈ Rj. Mais k ∈ Ri =⇒ 2k ∈ Ri, donc on a aussi m + 2k + n ∈ Rj. Alors
dj |m + k + n et dj |m + 2k + n, donc dj |k. Puisque cela est vrai pour tout k ∈ Ri, on obtient que dj |PGCD(Ri).
Symmétriquement, on montre que d|dj, donc dj = d.

Un état qui possède une boucle sur lui-même est forcément apériodique car il existe un chemin de lui-même à lui-même de longueur 1.

2. Redémontrer la propriété suivante vue en cours : « la récurrence est une propriété de classe : si i et j
communiquent et que i est récurrent, alors j est aussi récurrent. Par conséquent, la transience est également
une propriété de classe. »

☞ Comme i et j communiquent, on a p(n1)
i,j > 0 et p(n2)

j,i > 0 pour certains entiers n1 et n2. On en déduit :

∑
n

p(n1+n+n2)
j,j ≥ ∑

n
p(n2)

j,i p(n)i,i p(n1)
i,j = p(n2)

j,i p(n1)
i,j ∑

n
p(n)i,i = +∞ .

3. On regroupe les états d’une chaîne de Markov en classes d’équivalence pour la relation d’acces-
sibilité : deux états i et j sont dans la même classe si et seulement si i est accessible depuis j et j
est accessible depuis i. Une classe C d’états est dite close ou fermée si pour tout i ∈ C et pour tout
j /∈ C, on a Pi,j = 0 (où (Pi,j)i,j est la matrice de transition). Autrement dit, il n’y a aucune arête
sortant de cette classe. Démontrer que :
a. Une classe non close est transitoire.
b. Une classe close finie est récurrente.
En particulier, pour les chaînes de Markov à espace d’états fini, les classes récurrentes sont les
classes closes, et les classes transitoires sont les classes non closes.

☞ a. Soit C une classe non-close. Il existe donc i ∈ C et j /∈ C tels que pi,j ̸= 0. Or i et j ne communiquent pas car ils ne sont pas
dans les mêmes classes, donc i n’est pas accessible depuis j. Donc pour tout n, P {Xn = i|X1 = j} = 0 (où Xn décrit le n-ième état dans une
marche sur la chaîne de Markov). Soit Ti le temps d’atteinte de i, alors on déduit de ce qui précède que P {Ti < ∞|X1 = j} = 0. Finalement,
P {Ti = +∞|X0 = i} ≥ P {Ti = +∞|X0 = i, X1 = j} P {X1 = j|X0 = i} = 1 · pi,j > 0. Cela prouve que i est transitoire, et donc que C l’est.
b. On considère maintenant une classe C close finie. Alors pour tout i ∈ C, si on part de i, la chaîne reste dans C. On note Nj le nombre de passages
en l’état j. On a :

P

{
∑
j∈C

Nj = ∞|X0 = i

}
= 1 .

Or cette somme a un nombre fini de termes, donc on en déduit que P
{
∃j ∈ C, Nj = ∞|X0 = i

}
= 1. Si on suppose que tout j ∈ C est transitoire,

on aboutit à une contradiction, donc tous les j sont récurrents. Ainsi, toute classe finie close est récurrente.

4. Montrer que si π est une loi de probabilité stationnaire et si i est un état transitoire, alors π(i) = 0.
Indication : on pourra montrer d’abord les points suivants :
— x est transitoire ssi E [Nx|X0 = y] < ∞ pour tout état y,
— Si x est transitoire, alors (Qn)y,x → 0 quand n tend vers l’infini, pour tout état y (où Q est la matrice

de transition de la chaîne).
☞ Soit π une loi de probabilité stationnaire et i un état transitoire. π vérifie pour tout n, πpn = π donc πi = ∑j πj p

(n)
j,i .

Or si i est transitoire, p(n)j,i tend vers 0. En effet, i transitoire ssi P {Ni = ∞|X0 = i} = 0 par définition. Or P {Ni = ∞|X0 = i} ≥ P {Ni = ∞|X0 = j}
pour tout état j (chaîne sans mémoire), d’où E [Ni |X0 = j] < ∞. Il s’ensuit que p(n)j,i → 0.

On peut inverser série et limite par convergence dominée car |p(n)j,i | ≤ 1 et ∑j πj = 1 ; on déduit alors πi = 0.

Exercice 2. Examples
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On dispose de trois chaînes de Markov définies par les matrices de transition suivantes :

A =

2/3 0 1/3
1/4 1/2 1/4
1/2 0 1/2

 B =


0 2/3 0 1/3
0 0 1/2 1/2

1/4 0 0 3/4
0 0 0 1

 C =

1/2 1/4 1/4
0 1/2 1/2

1/4 0 3/4

 .

Pour chacune d’entre elles :
1. Donner sa représentation graphique.
2. Partitionner les états en composantes irréductibles.
3. Pour chaque état, dire s’il est transient ou récurrent.
4. Pour chaque état, dire s’il est périodique ou apériodique.
5. Donner la distribution stationnaire.
6. Pour chaque état, donner le temps de retour moyen.

☞
A 2. Il y a une composante fortement connexe fermée C1 = {1, 3} et une composante fortement connexe non fermée C2 = {2}.

3. Pour l’état 1, on a ∑t≥1 rt
1,1 = 2

3 + 1
3 ∑∞

t=1
1
2t = 1, donc 1 est récurrent.

De même, pour 3 a ∑t≥1 rt
3,3 = 1

2 + 1
2 × 1

3 × ∑∞
t=1

( 2
3

)t
= 1, donc 3 est récurrent.

Enfin, l’état 2 est transient.
4. La chaîne est apériodique (car la diagonale de la matrice de transition est non nulle).
5. La distribution stationnaire, i.e. l’unique mesure de probabilité invariante, est π = ( 3

5 , 0, 2
5 ).

6. Par le théorème du cours, on a, pour tout x, π(x) = 1
Ex (Tx )

. On obtient E1(T1) =
5
2 , E2(T2) = ∞ et E3(T3) =

5
3 .

B 2. Il y a une composante fortement connexe fermée C1 = {4} et une composante fortement connexe non fermée C2 = {1, 3, 3}.
3. L’état 4 est récurrent. Les états 2, 3 et 4 sont transients.
4. L’état 4 est apériodique. Les états 2, 3 et 4 sont périodiques de période 3.
5. On calcule π = (0, 0, 0, 1) (et 4 est un état absorbant).
6. On en déduit E4(T4) = 1 et E1(T1) = E2(T2) = E3(T3) = ∞.

C 2. La chaîne est irréductible : tous les états communiquent.
3. Tous les états sont récurrents.
4. Tous les états sont apériodiques.
5. Le distribution stationnaire est π = ( 2

7 , 1
7 , 4

7 ) (on peut la calculer avec un pivot de Gauss).
6. On en déduit E1(T1) =

7
2 , E2(T2) = 7 et E3(T3) =

7
4 .

Exercice 3. Récurrence et Transience

1. Soit S = {0, 1, . . . , n} et 0 < p < 1. On considère M1 la chaîne de Markov de matrice de transition
P donnée par :

pour 0 ≤ x < n, P(x, y) =

 p si y = x + 1
1 − p si y = 0
0 sinon

et P(n, y) =
{

1 si y = n
0 sinon

Dessiner le graphe associé à M1. Quels sont ses états récurrents et ses états transients ?
☞ (Faire un dessin au tableau.) On a deux classes d’équivalence (deux sous-chaînes irréductibles) dans cette chaîne. La première contient les
états {0, 1, . . . , n − 1} et l’autre l’état n. L’état n est récurrent, car P {Tn < ∞|X0 = n} = 1. Les autres états sont soit tous récurrents, soit tous
transients (car ils sont dans la même composante fortement connexe du graphe). Étudions l’état n − 1. On a

P {Tn−1 < ∞|X0 = n − 1} ≤ P {X1 = 0|X0 = n − 1}
= 1 − p

< 1.

Les états 0 à n − 1 sont donc transients.

2. Soit S = {1, . . . , 6}. Compléter la matrice suivante pour qu’elle corresponde à la matrice de
transition d’une chaîne de Markov.

M =


1/2 . 0 0 0 0

. 2/3 0 0 0 0
0 0 . 0 7/8 0

1/4 1/4 0 . 1/4 1/4
0 0 3/4 0 . 0
0 1/5 0 1/5 1/5 .


Déterminer quels sont ses états transitoires et récurrents.
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☞ On complète avec

M =


1/2 1/2 0 0 0 0
1/3 2/3 0 0 0 0

0 0 1/8 0 7/8 0
1/4 1/4 0 0 1/4 1/4

0 0 3/4 0 1/4 0
0 1/5 0 1/5 1/5 2/5


(Faire un dessin au tableau.) On voit qu’il y a deux composantes fortement connexes fermées (avec aucune arrête sortante) qui sont C1 = {1, 2}
et C2 = {3, 5}. L’ensemble {4, 6} est aussi fortement connexe mais n’est pas fermé. Si on regroupe ces composantes connexes et qu’on dessine
l’arbre associé, l’ensemble {4, 6} est la racine de l’arbre, et les noeuds C1 et C2 sont ses fils et sont des feuilles de l’arbre. On pourrait s’arrêter là :
comme le graphe est fini, on sait que les états dans les feuilles sont récurrents et les autres sont transients.
On va quand même faire la démonstration.

— Comme la composante C1 est fermée et fortement connexe, la chaîne de Markov (Xn) d’état initial 1 ou 2 et de matrice de transition M

est la même que la chaîne de Markov de même état initial et de matrice de transition
(

1/2 1/2
1/3 2/3

)
, sur l’ensemble d’états {1, 2}. Cette

chaîne est irréductible et a un nombre fini d’états, donc ses états sont récurrents.
— On montre de même que les états de C2 sont récurrents.
— Montrons maintenant que l’état 4 n’est pas récurrent (comme il communique avec 6, cela montrera aussi que 6 est transitoire). On a

P {Tx < ∞|X0 = 4} ≤ P {X1 = 6|X0 = 4} < 1, donc 4 et 6 sont transitoires.

3. Montrer que la chaîne de Markov précédente contient deux ensembles fermés (i.e. aucun état en
dehors de l’ensemble n’est accessible depuis un état dans l’ensemble) irréductibles non vides C1
et C2. Calculer, pour i ∈ {1, 2}, la probabilité

P {Xn ∈ Ci à partir d’un certain temps | X0 = 6} .

☞ On a déjà défini à la question précédents deux ensembles non vides C1 et C2 fermés et irréductibles. Calculons la probabilité que Xn ∈ C1 à
partir d’un certain temps, en partant de 6. Comme C1 est fermé, une suite qui entre dans C1 n’en ressortira plus. De même, une telle suite ne peut
pas rentrer dans C2 (sinon elle n’en sortirait plus pour aller dans C1). Donc une telle suite oscille entre 4 et 6 puis fini par rentrer dans C1. On
partitionne ces suites en fonction de l’instant k du dernier passage en 6 (un tel instant existe car on part de 6). Après ce dernier passage en 6, la
suite ira soit directement en 2, soit en 4 puis en 1 ou 2. On obtient :

P {Xn ∈ C1 à partir d’un certain temps | X0 = 6} = ∑
k

P {Xk = 6} ×
(

1
5
+

1
5
× 1

4
+

1
5
× 1

4

)
=

3
10

× ∑
k

P {Xk = 6} .

De même, en inversant les rôles de C1 et C2 on a :

P {Xn ∈ C2 à partir d’un certain temps | X0 = 6} = ∑
k

P {Xk = 6} ×
(

1
5
+

1
5
× 1

4

)
=

5
20

× ∑
k

P {Xk = 6} .

Pour finir le calcul, il faut calculer ∑k P {Xk = 6}. On peut éviter un calcul direct en remarquant que

P {Xn ∈ C1 à partir d’un certain temps | X0 = 6}+ P {Xn ∈ C2 à partir d’un certain temps | X0 = 6} = 1 .

En effet, on sait qu’une suite qui rentre dans C1 ou C2 n’en ressort jamais. On a donc trois possibilités, la suite rentre dans C1, ou bien elle rentre
dans C2, ou bien elle reste tout le temps dans {4, 6}. Mais si Xn ∈ {4, 6} pour tout n, alors N6 ou N4 est infini (nombre de passage en 4 ou 6). Or,
on a vu que 4 et 6 sont transitoires, donc on sait qu’un tel événement arrive avec probabilité 0.
Par conséquent, ∑k P {Xk = 6} (3/10 + 5/20) = 1. On obtient ∑k P {Xk = 6} = 20/11, d’où :

P {Xn ∈ C1 à partir d’un certain temps | X0 = 6} = 6/11

P {Xn ∈ C2 à partir d’un certain temps | X0 = 6} = 5/11.

Exercice 4. Chaines de Markov
Considérons la marche aléatoire simple sur Zd qui se déplace avec probabilité 1/2d vers chacun de
ses 2d voisins dans ka grille. Cette marche est clairement irréductible.
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A random walk in Z2 A random walk in Z3

(10000 steps, Wikipedia) (10000 steps, Wikipedia)

1. Pour d = 1, est elle récurrente ? récurrente positive ?
☞ [Déjà fait dans les TDs précédents]
Soit (Xn)n la chaîne de Markov associée à la marche aléatoire sur Z. La chaîne est irréductible, il suffit de montrer que 0 est récurrent. On
va utiliser la caractérisation suivante : x est récurrent ssi ∑n Pn(x, x) = ∞.
La chaîne est de période 2 donc P2n+1(0, 0) = 0.

P2n(0, 0) =
(

2n
n

)
1

22n (1)

(on choisit n étapes vers la droite parmi 2n, les n restantes sont forcément vers la gauche).

La formule de Stirling n! ∼
√

2πn
( n

e

)n donne

P2n(0, 0) ∼ 1√
πn

(2)

La série ∑n P2n(0, 0) diverge.

Pour montrer que la chaine de Markov est récurrente nulle, on peut par exemple faire la méthode des coupes (on aurait alors π(n) 1
2 =

π(n + 1) 1
2 soit π constante, ce qui en sommant sum les n donne π = 0)

2. Pour d = 2, est elle récurrente ? récurrente positive ?
Indice : considérer une décomposition de la marche en deux marches indépendantes
☞

Cas d=2
L’idée est de projeter sur les première et seconde bissectrices de pente ±1. On change donc de coordonnées. On suppose qu’on était dans
la base orthonormée = (

−→
i ,

−→
j ) et on fixe deux nouveaux vecteurs :

— −→u = 1
2

(−→
i +

−→
j
)

— −→v = 1
2

(−→
j −−→

i
)

Et on appelle ′ = (−→u ,−→v ).
Aussi un point de coordonnées (x, y) dans la base a des coordonnées (i + j, j − i) dans la base ′.
Les 4 mouvements possibles deviennent donc :
— (+1, 0)(+1,−1)
— (−1, 0)(−1,+1)
— (0,+1)(+1,+1)
— (0,−1)(−1,−1)

On obtient donc un produit cartésien de deux variables aléatoires indépendantes. On a donc deux marches aléatoires sur Z indépendantes.
C’est donc une marche aléatoire récurrente.

3. Dans le cas d = 3, pour tout n, montrer que

P {S2n = 0} = ∑
r+s+t=n

(
2n
n

)(
n

r, s, t

)2 1
62n ,

où Si est l’emplacement de la marche au temps i.
☞
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Cas d=3

Le nombre d’étape pour revenir à l’origine est 2n pour un certain n ∈ N. Dans le cas de Z3, de tels chemins doivent aller r fois vers le haut,
r fois vers le bas, t fois à gauche, t fois à droite, s fois devant et s fois vers l’arrière et tel que r + s + t = n. Alors

S2n = 0 = ∑
r+s+t=n

(2n)!
(r!s!t!)2

1
62n

= ∑
r,s,t

(2n)!
(r!s!t!)2

(n!)2

(n!)2
1

62n

=

(
2n
n

)
∑
r,s,t

(n!)2

(r!s!t!)2
1

62n

4. Montrer que
∞

∑
n=0

S2n = 0 < ∞

et conclure pour le cas d = 3.
☞
On peut remarquer que pour n = 3m, on a (

3m
r, s, t

)
≤

(
3m

m, m, m

)
(3)

Il suit

P6m(0, 0) ≤
(

2n
n

)(
3m

m, m, m

)
1
3n

1
22n ∑

r+s+t=n

(
3m

r, s, t

)
1
3n (4)

=

(
2n
n

)(
3m

m, m, m

)
1
3n

1
22n ∑

r+s+t=n

(
3m

r, s, t

)
1
3r

1
3s

1
3t︸ ︷︷ ︸

=(1/3+1/3+1/3)n=1

(5)

=

(
2n
n

)(
3m

m, m, m

)
1
3n

1
22n (6)

∼ 1
2

(
3

πn

)3/2

(7)

Par ailleurs,

P6m(0, 0) =
1
6

2 1
6

6m−2

∑
i,j,k=6m

... ≥ 1
6

2

P6m−2(0, 0) (8)

Comparaison similaire pour P6m−4(0, 0)
On conclut par

∑
n

P2n(0, 0) = ∑
m

∑
k=0,1,2

P6m−2k(0, 0) ≤ ∑
m

CP6m(0, 0) < ∞ (9)
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