L3 — Probabilités (Année 2025/2026) Lison Blondeau-Patissier & Anne Gagneux

TD 11 — Chaines de Markov (récurrence et transience) (corrigé)

Exercice 1. Propositions utiles
Le but de cet exercice est de démontrer les propriétés observées sur les exemples de chaines de Markov.

1. Redémontrer la propriété suivante vue en cours : «si un état i est périodique de période d et qu'il
communigue avec j, alors j est aussi de période d. » Autrement dit, la périodicité est une propriété de

classe. Que dire de la périodicité d'un état qui possede une boucle sur lui-méme?
(m)
ji

Puis, notons R; = {k e N | pl(/]::) > 0} (et de méme pour R;). Par hypothése, on a d = PGCD(R;). Notons d; = PGCD(R;).

Pour tout k € R;, on a p}"}”“") > p;j’)pgﬁ)pf";) >0, donc m+k+n € R;. Mais k € R; = 2k € R;, donc on a aussi m +2k+n € R;. Alors

di|m 4k +n et dj|lm -+ 2k +n, donc d;|k. Puisque cela est vrai pour tout k € R;, on obtient que d;|PGCD(R;).
Symmétriquement, on montre que d|d;, donc d; = d.

IS Gjjet j communiquent, alors il existe deux entiers 1 et m tels que pl(;f) >0etp >0

Un état qui posséde une boucle sur lui-méme est forcément apériodique car il existe un chemin de lui-méme a lui-méme de longueur 1.

2. Redémontrer la propriété suivante vue en cours : « la récurrence est une propriété de classe : si i et j
communiquent et que i est récurrent, alors j est aussi récurrent. Par conséquent, la transience est également
une propriété de classe. »

ny)

I Comme i et j communiquent, on a F’;,‘ >0et p;';z) > () pour certains entiers 17 et np. On en déduit :

(nq+n+ny) (n) (n) (n7) _(np) (nq) (n) _
Lz e vt = pt gt Lpl = e
n n n

3. On regroupe les états d’une chaine de Markov en classes d’équivalence pour la relation d’acces-
sibilité : deux états i et j sont dans la méme classe si et seulement si i est accessible depuis j et j
est accessible depuis i. Une classe C d’états est dite close ou fermée si pour tout i € C et pour tout
j#C,onaP;;=0(ou (P);, est la matrice de transition). Autrement dit, il n’y a aucune aréte
sortant de cette classe. Démontrer que :

a. Une classe non close est transitoire.
b. Une classe close finie est récurrente.
En particulier, pour les chaines de Markov a espace d’états fini, les classes récurrentes sont les

classes closes, et les classes transitoires sont les classes non closes.
IS 4. Soit C une classe non-close. Il existe donc i € C et j & C tels que p;; # 0. Or i et j ne communiquent pas car ils ne sont pas
dans les mémes classes, donc i n'est pas accessible depuis j. Donc pour tout n, P{X, =i|X; =j} = 0 (ou X, décrit le n-iéme état dans une
marche sur la chaine de Markov). Soit T; le temps d’atteinte de i, alors on déduit de ce qui précéde que P{T; < c0o|X; = j} = 0. Finalement,
P{T; = +oo|Xyg =i} > P{T; = +0|Xo =1, X; = j} P{X1 = j|Xo = i} = 1- p;; > 0. Cela prouve que i est transitoire, et donc que C I'est.
b. On considére maintenant une classe C close finie. Alors pour tout i € C, si on part de i, la chaine reste dans C. On note N; le nombre de passages
en |'état j. On a:

P{ZNj:oo\XO:i} =1.
jec
Or cette somme a un nombre fini de termes, donc on en déduit que P {3] €C,Nj = oo[Xy = i} = 1. Si on suppose que tout j € C est transitoire,

on aboutit a une contradiction, donc tous les j sont récurrents. Ainsi, toute classe finie close est récurrente.

4. Montrer que si 7t est une loi de probabilité stationnaire et si i est un état transitoire, alors 77(i) = 0.

Indication : on pourra montrer d’abord les points suivants :

— x est transitoire ssi E [Ny|Xo = y] < oo pour tout état y,

— Si x est transitoire, alors (Q")y,» — 0 quand n tend vers l'infini, pour tout état y (oit Q est la matrice
de transition de la chaine). "

I Soit 77 une loi de probabilité stationnaire et i un état transitoire. 7t vérifie pour tout n, mp" = 7 donc 71; = Y TP -
Or si i est transitoire, p](v:f) tend vers 0. En effet, i transitoire ssi P {N; = 00| Xy = i} = 0 par définition. Or P {N; = 00| Xy =i} > P{N; = 00| Xy = j}

pour tout état j (chaine sans mémoire), d’ou E [N;| Xy = j] < co. Il s’ensuit que p](v;-l') — 0.

On peut inverser série et limite par convergence dominée car \p;';)\ <let Z/- 7; = 1; on déduit alors 7r; = 0.

Exercice 2. Examples



On dispose de trois chaines de Markov définies par les matrices de transition suivantes :

0o 2/3 0 1/3

2/3 0 1/3 12 1/4 1/4
A= (174 172 1/a B— 194 8 162 éﬁ c=| o 172 12
12 0 1/2 1/4 0 3/4

0 0 0 1

Pour chacune d’entre elles :
1. Donner sa représentation graphique.
2. Partitionner les états en composantes irréductibles.
3. Pour chaque état, dire s'il est transient ou récurrent.
4. Pour chaque état, dire s’il est périodique ou apériodique.
5. Donner la distribution stationnaire.
6. Pour chaque état, donner le temps de retour moyen.

Iy
A 2. Ily a une composante fortement connexe fermée C; = {1,3} et une composante fortement connexe non fermée C, = {2}.
3. Pour l'état 1, 0na Yoy 1i; = 2Hive, zit =1, donc 1 est récurrent.
De méme, pour 3 a Yoy 15 = THixIxyR, (%)f =1, donc 3 est récurrent.
Enfin, I'état 2 est transient.
4. La chaine est apériodique (car la diagonale de la matrice de transition est non nulle).
5. La distribution stationnaire, i.e. I'unique mesure de probabilité invariante, est 7w = (%,O, %)
6. Par le théoréme du cours, on a, pour tout x, 7(x) = ﬁ On obtient Ey(Ty) = 3, Ex(T) = oo et E3(T3) = 3.
B 2. ll'y a une composante fortement connexe fermée C; = {4} et une composante fortement connexe non fermée C, = {1,3,3}.
3. L'état 4 est récurrent. Les états 2, 3 et 4 sont transients.
4. L'état 4 est apériodique. Les états 2, 3 et 4 sont périodiques de période 3.
5. On calcule 1 = (0,0,0,1) (et 4 est un état absorbant).
6. On en déduit E4(Ty) =1 et Eq(Ty) = Ex(To) = E3(T3) = .
C 2. La chaine est irréductible : tous les états communiquent.
3. Tous les états sont récurrents.
4. Tous les états sont apériodiques.
5. Le distribution stationnaire est 7 = (2, 1, %) (on peut la calculer avec un pivot de Gauss).
6. On en déduit E1(Ty) = £, Eo(T») =7 et E3(T3) = 5.
Exercice 3. Récurrence et Transience

1. SoitS ={0,1,...,n}et0 < p < 1. On considére M la chaine de Markov de matrice de transition
P donnée par :

P siy=x+1 1 siy=mn
pour0<x<mn, Plx,y)=¢ 1—p siy=0 et P(n,y) = { 0 sinon
0 sinon

Dessiner le graphe associé a M. Quels sont ses états récurrents et ses états transients ?
I (Faire un dessin au tableau.) On a deux classes d’équivalence (deux sous-chaines irréductibles) dans cette chaine. La premiére contient les
états {0,1,...,n — 1} et l'autre I'état n. L'état n est récurrent, car P{T, < co|Xo =n} = 1. Les autres états sont soit tous récurrents, soit tous
transients (car ils sont dans la méme composante fortement connexe du graphe). Etudions I'état n — 1. On a
P{T, 1 <oo|Xo=n—1} <P{X; =0|Xy=n—1}
=1 14
<L

Les états 0 a n — 1 sont donc transients.

2. Soit S = {1,...,6}. Compléter la matrice suivante pour qu’elle corresponde a la matrice de
transition d"une chaine de Markov.

/2 . 0 0 0 0
2/3 0 0 0 0

M_| 0 0 . 0 7/8 0
“l1/4 174 0 . 1/4 1/4
0 0 3/4 0 0

0o 1/5 0 1/5 1)5

Déterminer quels sont ses états transitoires et récurrents.



I On compléte avec

1/2  1/2 0 0 0 0

1/3  2/3 0 0 0 0

M 0 0 1/8 0 7/8 0
{174 1/4 0 0 1/4 1/4

0 0 3/4 0 1/4 0

0 1/5 0 1/5 1/5 2/5

(Faire un dessin au tableau.) On voit qu'il y a deux composantes fortement connexes fermées (avec aucune arréte sortante) qui sont C; = {1,2}
et C, = {3,5}. L'ensemble {4,6} est aussi fortement connexe mais n'est pas fermé. Si on regroupe ces composantes connexes et qu'on dessine
I'arbre associé, I'ensemble {4,6} est la racine de I'arbre, et les noeuds C; et C; sont ses fils et sont des feuilles de I'arbre. On pourrait s'arréter 13 :
comme le graphe est fini, on sait que les états dans les feuilles sont récurrents et les autres sont transients.
On va quand méme faire la démonstration.

— Comme la composante C; est fermée et fortement connexe, la chaine de Markov (X,) d'état initial 1 ou 2 et de matrice de transition M

. N T . - 1/2  1/2 , y
est la méme que la chaine de Markov de méme état initial et de matrice de transition (1;3 2§3), sur I'ensemble d’états {1,2}. Cette
chaine est irréductible et a un nombre fini d’'états, donc ses états sont récurrents.
— On montre de méme que les états de C, sont récurrents.
— Montrons maintenant que I'état 4 n’est pas récurrent (comme il communique avec 6, cela montrera aussi que 6 est transitoire). On a

P{T, < o0|Xg =4} <P{X; =6|Xo =4} <1, donc 4 et 6 sont transitoires.
3. Montrer que la chaine de Markov précédente contient deux ensembles fermés (i.e. aucun état en

dehors de I'ensemble n’est accessible depuis un état dans 1’ensemble) irréductibles non vides Cy
et Cy. Calculer, pour i € {1,2}, la probabilité

P {X, € C; a partir d'un certain temps | Xo = 6} .

5" Ona déja défini a la question précédents deux ensembles non vides C; et C, fermés et irréductibles. Calculons la probabilité que X, € C; a
partir d'un certain temps, en partant de 6. Comme C; est fermé, une suite qui entre dans C; n’en ressortira plus. De méme, une telle suite ne peut
pas rentrer dans C, (sinon elle n’en sortirait plus pour aller dans C;). Donc une telle suite oscille entre 4 et 6 puis fini par rentrer dans C;. On
partitionne ces suites en fonction de l'instant k du dernier passage en 6 (un tel instant existe car on part de 6). Aprés ce dernier passage en 6, la
suite ira soit directement en 2, soit en 4 puis en 1 ou 2. On obtient :

P {X, € C; a partir d'un certain temps | Xp = 6} ;P{Xk =6} x (% +% x i+é % i)

3

— x ) P{X;=6}.
T ; {Xx =6}
De méme, en inversant les roles de C; et C; on a :

P {X, € C; a partir d'un certain temps | Xo =6} = ;I’{Xk =6} % (% +% X i)

5
= %X;P{X;{:6}.

Pour finir le calcul, il faut calculer }°; P {X; = 6}. On peut éviter un calcul direct en remarquant que
P {X, € C; a partir d'un certain temps | Xo = 6} + P {X,, € C, a partir d'un certain temps | Xo =6} =1.

En effet, on sait qu'une suite qui rentre dans C; ou C; n'en ressort jamais. On a donc trois possibilités, la suite rentre dans Cq, ou bien elle rentre
dans C,, ou bien elle reste tout le temps dans {4,6}. Mais si X, € {4,6} pour tout #, alors Ny ou Ny est infini (nombre de passage en 4 ou 6). Or,
on a vu que 4 et 6 sont transitoires, donc on sait qu'un tel événement arrive avec probabilité 0.
Par conséquent, Y, P{X; =6} (3/10+5/20) = 1. On obtient }; P{X; = 6} = 20/11, d’ou :

P {X, € C; a partir d'un certain temps | Xo = 6} = 6/11

P {X, € C; a partir d'un certain temps | Xg =6} = 5/11.

Exercice 4. Chaines de Markov
Considérons la marche aléatoire simple sur Z% qui se déplace avec probabilité 1/2d vers chacun de
ses 2d voisins dans ka grille. Cette marche est clairement irréductible.



1.

A random walk in 22 A random walk in Z3
(10000 steps, Wikipedia) (10000 steps, Wikipedia)

Pour d = 1, est elle récurrente ? récurrente positive ?

I [Dégja fait dans les TDs précédents]

Soit (X, ) la chaine de Markov associée a la marche aléatoire sur Z. La chaine est irréductible, il suffit de montrer que 0 est récurrent. On
va utiliser la caractérisation suivante : x est récurrent ssi y_, P"(x, x) = co.

La chaine est de période 2 donc P¥'+1(0,0) = 0.

n ) 22n

P2(0,0) = <2n> ! (@)

(on choisit n étapes vers la droite parmi 21, les n restantes sont forcément vers la gauche).
La formule de Stirling n! ~ v/27tn ()" donne

P2(0,0) ~ ()]

1
Vo
La série ¥, P2(0,0) diverge.

Pour montrer que la chaine de Markov est récurrente nulle, on peut par exemple faire la méthode des coupes (on aurait alors n(n)% =

t(n+ 1)% soit 7T constante, ce qui en sommant sum les n donne 7 = 0)

Pour d = 2, est elle récurrente ? récurrente positive ?

Indice : considérer une décomposition de la marche en deux marches indépendantes
(=

Cas d=2

L'idée est de projeter sur les premiére et seconde bissectrices de pente £1. On change donc de coordonnées. On suppose qu’on était dans

la base orthonormée = (i, j ) et on fixe deux nouveaux vecteurs :

i d
—7:%(z+])
- =
— T=3(7 -

Et on appelle ' = (7,7)
Aussi un point de coordonnées (x,y) dans la base a des coordonnées (i +j,j —i) dans la base .

Les 4 mouvements possibles deviennent donc :
— (+1,0)(+1,-1)

— (=1,0)(=1,+1)
— (0,4+1)(+1,4+1)
- (0’71)(71/71)

On obtient donc un produit cartésien de deux variables aléatoires indépendantes. On a donc deux marches aléatoires sur Z indépendantes.
C’est donc une marche aléatoire récurrente.

3. Dans le cas d = 3, pour tout n, montrer que

rs=o= 2 ()0 &

r+s+t=n

ou 5; est I'emplacement de la marche au temps i.
=



Cas d=3

Le nombre d’étape pour revenir a I'origine est 21 pour un certain 7 € N. Dans le cas de Z3, de tels chemins doivent aller r fois vers le haut,

r fois vers le bas, t fois a gauche, f fois a droite, s fois devant et s fois vers |'arriére et tel que r +s + t = n. Alors

(2n)! 1
e, (rislinz @2
_ @2m)! (n)? 1
a ,);; (rls!th2 (n!)2 621
_(2n (n!)z 1
- <"> L (risltn)? 620

rs,t

Sy =0=

Montrer que
[e9)
Z Sop=0< o0
n=0

et conclure pour le cas d = 3.
=y

On peut remarquer que pour n = 3m, on a

IN

3m 3m
r,s,t m,m,m

Pém(O,O)S(zn)( 3m >iﬂ% Z (3111)
n ) \m,mm)3" 22 o \rs,t

Il suit

1
3n
1

3

=(1/3+1/3+1/3)"=1

Par ailleurs,

12
2 - P(wz—2<0/0)
i,jk=6m 6

Comparaison similaire pour P®"~%(0,0)
On conclut par

EPZH(O,O) — Z

n k=0,1,2

2n 3m 11 Z 3m 11
n ) \m,m,m)3n 22 L \r,s,t 3s 3t

—_— —

Pém—zk (0/ 0) < Z Cpam (0/ 0) < o
m

3)

(4)

5)

(6)

(7)

®

9



