TD 05

Exercice 1.

Fonctions de répartition

Définitions. Pour une variable aléatoire réelle *X*, on a :

— sa **densité** de probabilité f_X est telle que :

$$\forall a, b \in \mathbb{R}, \quad \mathbf{P}\left\{a < Xb\right\} = \int_a^b f_X(t) dt,$$

— la **fonction de répartition** associée est :

$$F_X(x) = \int_{-\infty}^x f_X(t) dt,$$

— l'**espérance** de *X* est définie par (si l'intégrale est absolument convergente) :

$$\mathbf{E}[X] = \int_{-\infty}^{+\infty} t f_X(t) dt,$$

— la **variance** de X est définie par (si $\mathbf{E}[X^2]$ existe) :

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2.$$

1. Donner la densité, la fonction de répartition, l'espérance et la variance d'une variable aléatoire U suivant la loi uniforme sur [a,b] pour a < b.

Soit U une v.a. de loi uniforme sur [0,2]. On considère $X:=\sqrt{U}$.

- **2.** Calculer la fonction de répartition F_X de X.
- **3.** Calculer la densité f_X de X.
- **4.** On considère maintenant $Y := \frac{1}{U}$. Calculer F_Y et f_Y .

5. Quelle est l'espérance de *Y* ? La calculer par deux méthodes différentes.

Exercice 2. Records

Soient $U_1, ..., U_n$ des variables aléatoires indépendantes, uniformément distribuées sur [0,1].

Pour $i \in \{1, ..., n\}$, on dit que U_i est un **record** si pour tout $j \le i$, on a $U_i \le U_j$.

Calculer l'espérance du nombre de records dans la suite U_1, \ldots, U_n .

Exercice 3. Interrupteurs

1. Montrer qu'il existe une constante $\gamma>0$ rendant l'énoncé suivant vrai :

« Si une v.a. positive
$$X$$
 vérifie $\mathbf{E}[X]=1$ et $\mathbf{E}[X^2]\leq 3$, alors $\mathbf{P}\{X\geq 1/4\}\geq \gamma$. »

Indication : définir la variable aléatoire $Y = \mathbf{1}_{X \geq 1/4}$ et se ramener à l'inégalité de Cauchy-Schwarz. $\mathbb{E}(XY) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$

2. Soient (X_1, \ldots, X_n) des v.a. i.i.d. vérifiant

$$\mathbf{P}\{X_i=1\} = \mathbf{P}\{X_i=-1\} = \frac{1}{2}.$$

On pose $Y = \frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$. Calculer $\mathbf{E}[Y^2]$ et $\mathbf{E}[Y^4]$ et en déduire que :

 $\mathbf{E}\left[|X_1+\cdots+X_n|\right]\geq \frac{\gamma}{2}\sqrt{n}.$

On considère une grille $n \times n$ d'ampoules ainsi que 3 séries d'interrupteurs : des interrupteurs $a = (a_{ij})_{1 \le i,j \le n}$ associés à chaque ampoule, des interrupteurs $b = (b_i)_{1 \le i \le n}$ associés à chaque ligne et des interrupteurs $c = (c_j)_{1 \le j \le n}$ associés à chaque colonne. Chaque interrupteur prend la valeur -1 ou 1. L'ampoule en position (i,j) est allumée si et seulement

si $a_{ij} \times b_i \times c_j = 1$. On considère la quantité

$$\mathbf{F}(a,b,c) = \sum_{i,j=1}^{n} a_{ij}b_ic_j$$

qui est le nombre d'ampoules allumées moins le nombre d'ampoules éteintes.

Deux joueuses jouent au jeu suivant :

- 1. la joueuse 1 choisit la position des interrupteurs (a_{ij}) ,
- 2. puis la joueuse 2 choisit la position des interrupteurs (b_i) et (c_j) . La joueuse 1 veut minimiser $\mathbf{F}(a,b,c)$ et la joueuse 2 veut le maximiser. On considère donc :

$$\mathbf{V}(n) = \min_{a \in \{-1,1\}^{n \times n}} \max_{b,c \in \{-1,1\}^n} \mathbf{F}(a,b,c).$$

- **3.** Montrer que $V(n) = \mathcal{O}(n^{3/2})$ en considérant le cas où la joueuse 1 joue au hasard.
- 4. La joueuse 2 applique la stratégie suivante : elle choisit b au hasard, puis ensuite choisit c de façon à allumer le maximum de lampes. Estimer le nombre moyen de lampes allumées par cette stratégie (indication : utiliser la question 2) et en déduire que $\mathbf{V}(n) = \Omega(n^{3/2})$.

Exercice 4. Arrondi

Soit U un ensemble à n éléments. On appelle recouvrement de U un ensemble $S = (S_1, \dots, S_m)$ de parties de U qui vérifie $\bigcup S_i = U$. Étant donné S un recouvrement de U, on note OPT(S) le cardinal minimal d'un sous-ensemble de S qui est encore un recouvrement de U.

1. Expliquer rapidement pourquoi $OPT(\mathcal{S})$ est la solution du pro-

blème d'optimisation suivant :

Minimiser
$$\sum_{i=1}^{m} x_i$$
 sous les contraintes $x_i \in \{0,1\}$ et $\sum_{i=1}^{m} x_i \mathbf{1}_{S_i} \ge \mathbf{1}_U$ (1)

On considère le problème suivant qui est une relaxation de (1):

Minimiser
$$\sum_{i=1}^{m} z_i$$
 sous les contraintes $z_i \in [0,1]$ et $\sum_{i=1}^{m} z_i \mathbf{1}_{S_i} \geq \mathbf{1}_U$ (2)

Alors que le problème (1) est NP-difficile, le problème (2) peut être résolu en temps polynomial par les méthodes de programmation linéaire.

2. Soit k un entier, et $(z_i)_{1 \le i \le m}$ qui minimisent (2). Soient $(X_{i,j})_{1 \le i \le m, 1 \le j \le k}$ des variables aléatoires indépendantes vérifiant $\mathbf{P}\{X_{i,j}=1\}=z_i$, $\mathbf{P}\{X_{i,j}=0\}=1-z_i$. On définit un sous-ensemble $\mathcal{T}\subset\mathcal{S}$ par la condition :

$$S_i \in \mathcal{T} \iff \exists j \in \{1,\ldots,k\} : X_{i,j} = 1.$$

Montrer que:

$$\mathbf{E}[\#\mathcal{T}] \leq k \mathrm{OPT}(\mathcal{S}).$$

3. Déterminer une valeur de c > 0 telle que, si on pose $k = \lfloor c \log n \rfloor$, on ait :

$$\mathbf{P}\left\{\mathcal{T} \text{ est un recouvrement de } U\right\} \geq 1 - \frac{1}{n}.$$