TD 05 (corrigé)

Exercice 1.

Comparer les bornes

On a un dé équilibré à 6 côtés. On lance le dé n fois et on note X le nombre de fois où le dé tombe sur 6. Soit q la probabilité de l'événement $X \ge n/4$.

1. Comparer les bornes supérieures que l'on obtient en utilisant l'inégalité de Markov, l'inégalité de Chebyshev, et une borne de Chernoff (la plus adaptée).

La variable X est une somme de n variables de Bernouilli de paramètre 1/6. On a donc $\mathbf{E}[X] = \frac{n}{6}$ et $\mathbf{Var}[X] = \frac{5n}{36}$. On obtient :

Markov : $P\{X \ge n/4\} \le \frac{E[X]}{n/4} = 2/3$.

Chebyshev : $\mathbf{P}\left\{X \ge \frac{n}{4}\right\} = \mathbf{P}\left\{X - \frac{n}{6} \ge \frac{n}{12}\right\} \le \frac{\mathbf{Var}[X]}{(n/12)^2} = \frac{20}{n}$

Chernoff (en utilisant la variante #2 où les X_i sont des variable aléatoires in-dépendantes à valeurs dans [0,1] : $\mathbf{P}\left\{X\geq (1+\varepsilon)\mathbf{E}\left[X\right]\right\}\leq \exp\left(-\frac{\varepsilon^2}{2+\varepsilon}\mathbf{E}\left[X\right]\right)$:

$$\mathbf{P}\left\{X \ge \frac{n}{4}\right\} = \mathbf{P}\left\{X \ge \left(1 + \frac{1}{2}\right)\mathbf{E}\left[X\right]\right\} \le \exp\left(-\frac{n}{60}\right) .$$

Exercice 2.

Chernoff Interval

— Soit X une variable aléatoire quelconque avec $0 \le X \le 1$ et $\mathbb{E}[X] = p$. Considérons la variable aléatoire $Y \in \{0,1\}$ telle que $\Pr(Y = 1) = p$.Montrer que pour tout $\lambda > 0$,

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \mathbb{E}\left[e^{\lambda Y}\right].$$

Indice : on pourra utiliser la convexité de la fonction exponentielle.

— En utilisant ce fait, montrer que la borne de Chernoff vue en cours reste valable si l'on remplace l'hypothèse $X_i \in \{0,1\}$ par $X_i \in [0,1]$.

La fonction $x \to e^{\lambda x}$ est convexe donc pour $x \in [0,1]$, $e^{\lambda x} \le (1-x)e^0 + xe^{\lambda} = (1-x) + xe^{\lambda}$.

En particulier,

$$\mathbf{E}\left[e^{\lambda X}\right] \leq \mathbf{E}\left[(1-X) + Xe^{\lambda}\right] = (1-p) + pe^{\lambda} = \mathbf{E}\left[e^{\lambda Y}\right].$$

Maintenant, on a tous les outils pour reprendre la preuve de la borne de Chernoff : soit X_i des variables aléatoires indépendantes à valeurs dans [0,1] avec $\mathbf{E}[X_i] = p_i$. Alors

$$\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq (1-p_{i}) + p_{i}e^{\lambda} = 1 + p_{i}(e^{\lambda}-1) \leq e^{p_{i}(e^{\lambda}-1)}$$
.

Soit $X = \sum X_i$ et $\mu = \mathbf{E}[X] = \sum_{i=1}^n p_i$. Alors de même que dans la preuve originale,

$$\mathbf{E}\left[e^{\lambda X}\right] = \prod_{i} \mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \prod_{i} e^{p_{i}(e^{\lambda} - 1)} = e^{\mu(e^{\lambda} - 1)}$$

On applique Markov à $e^{\lambda X}$:

$$\mathbf{P}\left\{X \ge (1+\delta)\mu\right\} = \mathbf{P}\left\{e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right\}$$

$$\le \frac{\mathbf{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta)\mu}}$$

$$\le \frac{e^{\mu(e^{\lambda}-1)}}{e^{\lambda(1+\delta)\mu}}$$

En posant $\lambda = \ln(1+\delta) > 0$, on obtient

$$\mathbf{P}\left\{X \ge (1+\delta)\mu\right\} \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Exercice 3. Calcul de la médiane

On étudie un algorithme probabiliste 1 pour déterminer la médiane d'un ensemble $E = \{x_1, \ldots, x_n\}$ de n nombres réels en temps $\mathcal{O}(n)$. On rappelle que m est une médiane de E si au moins $\lceil n/2 \rceil$ des élements de E sont inférieurs ou égaux à m, et au moins $\lceil n/2 \rceil$ des élements de E sont supérieurs ou égaux à E. Pour simplifier on suppose E0 impair (ce qui fait que la médiane est unique) et on suppose aussi que les éléments de E5 sont tous distincts.

Voici comment fonctionne l'algorithme :

- (a) Soit $(Y_i)_{1 \le i \le n}$ une suite de v.a. i.i.d. de loi de Bernoulli de paramètre $n^{-1/4}$. On considère le sous-ensemble aléatoire de E défini par $F = \{x_i : Y_i = 1\}$. Si card $F \le \frac{2}{3}n^{3/4}$ ou card $F \ge 2n^{3/4}$ on répond «ERREUR 1».
- (b) On trie F et on appelle d le $\lfloor \frac{1}{2}n^{3/4} \sqrt{n} \rfloor$ ème plus petit élément de F, et u le $\lfloor \frac{1}{2}n^{3/4} + \sqrt{n} \rfloor$ ème plus grand élément de F.
- (c) On détermine le rang de d et de u dans E (l'élément minimal a rang 1, l'élément maximal a rang n), que l'on note respectivement r_d et r_u . Si $r_d > n/2$ ou $r_u < n/2$ on répond «ERREUR 2».
- (d) On note $G = \{x_i \in E : d < x_i < u\}$. Si card $G \ge 4n^{3/4}$ on répond «ERREUR 3».
- (e) On trie G et on renvoie le $(\lceil n/2 \rceil r_d)$ ème élement de G.
- 1. Justifier pourquoi l'algorithme retourne la médiane en temps $\mathcal{O}(n)$ lorsqu'il ne répond pas de message d'erreur.

Si aucun message d'erreur n'est renvoyé, l'algorithme s'exécute en temps O(n); en effet la génération des (Y_i) prend un temps O(n), le tri de F et G prend un temps $O(m \log m)$ pour $m = O(n^{3/4})$, et la détermination de r_d , de r_u et de G nécessite O(n) comparaisons. De plus, l'absence de message

^{1.} Remarque : il existe un algorithme déterministe de même performance

d'erreur numéro 2 garantit que la médiane est dans l'intervalle [d,u], donc dans G.

2. Montrer que pour $i \in \{1, 2, 3\}$, on a :

$$\lim_{n\to\infty} \Pr\left(\text{l'algorithme retourne "ERREUR } i^{\text{w}}\right) = 0.$$

Pour simplifier l'analyse et éviter d'écrire des symobles $\lfloor \cdot \rfloor$ ou $\lceil \cdot \rceil$, on pourra supposer implicitement que des nombres tels que \sqrt{n} , $\frac{1}{2}n^{3/4}$, ... sont des entiers.

B

1. Pour l'erreur 1 : comme card $F = Y_1 + \cdots + Y_n$ a la loi $B(n, n^{-1/4})$, on a par l'inégalité de Chernoff II

$$P(\operatorname{card} F \ge 2n^{3/4}) \le \exp(-n^{3/4}/3), \ P(\operatorname{card} F \le \frac{2}{3}n^{3/4}) \le \exp(-n^{3/4}/18).$$

2. Pour l'erreur 2 : on note E^- l'ensemble des éléments de E inférieurs où égaux à la médiane, et on remarque que $r_d > n/2$ équivaut à card $(F \cap E^-) < \frac{1}{2} n^{3/4} - \sqrt{n}$. La v.a. card $(F \cap E^-)$ suit la loi $B(\lceil n/2 \rceil, n^{-1/4})$ (notons μ sa moyenne) donc par l'inégalité de Chernoff II

$$P(\operatorname{card}(F \cap E^{-}) < \frac{1}{2}n^{3/4} - \sqrt{n}) \le P(\operatorname{card}(F \cap E^{-}) \le (1 - 2n^{-1/4})\mu) \le \exp(-\frac{1}{2}n^{3/4} - \sqrt{n})$$

Un argument symétrique traite le cas de $r_u > n/2$ et considérant E^+ l'ensemble des éléments de E supérieurs où égaux à la médiane

3. Pour l'erreur 3 : si card $G \geq 4n^{3/4}$, alors ou bien card $(G \cap E^-) \geq 2n^{3/4}$ ou bien card $(G \cap E^+) \geq 2n^{3/4}$; ces deux événements ayant même probabilité, il suffit de montrer que $P(\operatorname{card}(G \cap E^-) \geq 2n^{3/4}) \rightarrow 0$. On remarque que si card $(G \cap E^-) \geq 2n^{3/4}$, alors $r_d \leq \frac{n}{2} - 2n^{3/4}$ et donc l'ensemble F contient au moins $\frac{1}{2}n^{3/4} - \sqrt{n}$ parmi les $\frac{n}{2} - 2n^{3/4}$ plus petits éléments de E. La probabilité de ce dernier événement est $P(X \geq (1+\varepsilon)\mathbf{E}[X])$, où $X \sim B(\frac{n}{2} - 2n^{3/4}, n^{-1/4})$ et

 $\varepsilon=\frac{\sqrt{n}}{n^{3/4}/2-2\sqrt{n}}=O(n^{-1/4}).$ Une dernière application de l'inégalité de Chernoff II permet de conclure que la probabilité considérée tend vers 0.

Exercice 4. Interrupteurs

1. Montrer qu'il existe une constante $\gamma>0$ rendant l'énoncé suivant vrai :

« Si une v.a. positive
$$X$$
 vérifie $\mathbf{E}[X]=1$ et $\mathbf{E}[X^2]\leq 3$, alors $\mathbf{P}\{X\geq 1/4\}\geq \gamma$. »

Indication : définir la variable aléatoire $Y = \mathbf{1}_{X \geq 1/4}$ et se ramener à l'inégalité de Cauchy-Schwarz. $\mathbb{E}(XY) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$

On écrit

$$1 = \mathsf{E}[X] = \mathsf{E}[X\mathbf{1}_{X < 1/4}] + \mathsf{E}[X\mathbf{1}_{X \ge 1/4}] \le \frac{1}{4} + \mathsf{E}[X\mathbf{1}_{X \ge 1/4}].$$

Par l'inégalité de Cauchy–Schwarz, $\mathsf{E}[X\mathbf{1}_{X\geq 1/4}] \leq \sqrt{\mathsf{E}[X^2]\mathsf{P}(X\geq 1/4)} \leq \sqrt{3}\sqrt{\mathsf{P}(X\geq 1/4)}.$ On obtient la minoration voulue pour $\gamma=3/16$.

2. Soient (X_1, \ldots, X_n) des v.a. i.i.d. vérifiant

$$\mathbf{P}\{X_i=1\} = \mathbf{P}\{X_i=-1\} = \frac{1}{2}.$$

On pose $Y = \frac{1}{\sqrt{n}}(X_1 + \cdots + X_n)$. Calculer $\mathbf{E}[Y^2]$ et $\mathbf{E}[Y^4]$ et en déduire que :

$$\mathbf{E}\left[|X_1+\cdots+X_n|\right]\geq \frac{\gamma}{2}\sqrt{n}.$$

On a $E[Y^2] = \frac{1}{n} \cdot \mathbf{Var}[Y] = \frac{1}{n} \cdot \sum_i \mathbf{Var}[X_i] = 1$ (par inédependance). On a ensuite

$$E[Y^4] = \frac{1}{n^2} \cdot \sum_{i,j,k,l=1}^n E[X_i X_j X_k X_l].$$

L'indépendance des X_i et le fait que $\mathsf{E}[X_i] = 0$ implique $\mathsf{E}[X_i X_j X_k X_l] = 0$ dès qu'un indice apparaît une unique fois parmi $\{i,j,k,l\}$. Les seuls termes

non nuls sont ceux où i=j=k=l ou $i=j\neq k=l$ ou $i=k\neq j=l$ ou $i=l\neq j=k$. On a donc

$$\mathsf{E}[Y^4] = 1/n^2(n+3n(n-1)) = 3-2/n \le 3.$$

On applique la question précédente à $X=Y^2$, d'où $\mathsf{P}(Y^2\geq 1/4)=\mathsf{P}(|X_1+\cdots+X_n|\geq \frac{\sqrt{n}}{2})\geq \gamma$. Enfin,

$$\mathsf{E}[|X_1+\cdots+X_n|] \geq \frac{\sqrt{n}}{2}\mathsf{P}\left(|X_1+\cdots+X_n| \geq \frac{\sqrt{n}}{2}\right) \geq \frac{\gamma\sqrt{n}}{2}.$$

On considère une grille $n \times n$ d'ampoules ainsi que 3 séries d'interrupteurs : des interrupteurs $a = (a_{ij})_{1 \le i,j \le n}$ associés à chaque ampoule, des interrupteurs $b = (b_i)_{1 \le i \le n}$ associés à chaque ligne et des interrupteurs $c = (c_j)_{1 \le j \le n}$ associés à chaque colonne. Chaque interrupteur prend la valeur -1 ou 1. L'ampoule en position (i,j) est allumée si et seulement si $a_{ij} \times b_i \times c_j = 1$. On considère la quantité

$$\mathbf{F}(a,b,c) = \sum_{i,j=1}^{n} a_{ij}b_ic_j$$

qui est le nombre d'ampoules allumées moins le nombre d'ampoules éteintes.

Deux joueuses jouent au jeu suivant :

- 1. la joueuse 1 choisit la position des interrupteurs (a_{ij}) ,
- 2. puis la joueuse 2 choisit la position des interrupteurs (b_i) et (c_j) .

La joueuse 1 veut minimiser $\mathbf{F}(a,b,c)$ et la joueuse 2 veut le maximiser. On considère donc :

$$\mathbf{V}(n) = \min_{a \in \{-1,1\}^{n \times n}} \max_{b,c \in \{-1,1\}^n} \mathbf{F}(a,b,c).$$

3. Montrer que $\mathbf{V}(n) = \mathcal{O}(n^{3/2})$ en considérant le cas où la joueuse 1

joue au hasard.

Soit $(a_{ij})_{1 \le i,j \le n}$ des v.a. i.i.d. de loi uniforme sur $\{-1,1\}$. Quel que soit le choix de b et c, on a

$$P(F(a,b,c) \ge t) \le \exp(-t^2/2n^2)$$

par l'inégalité de Chernoff (en effet, F(a,b,c) est la somme de n^2 v.a. de loi uniforme sur $\{-1,1\}$). Par la borne de l'union,

$$P(\max_{b,c} F(a,b,c) \ge t) \le 4^n \exp(-t^2/2n^2).$$

Lorsque $t > \sqrt{2n^3 \log 4}$, cette probabilité est < 1 et donc $\mathsf{P}(\max_{b,c} F(a,b,c) < t) > 0$: il existe donc un choix de a tel que $\max_{b,c} F(a,b,c) < t$, d'où $V(n) = O(n^{3/2})$.

4. La joueuse 2 applique la stratégie suivante : elle choisit b au hasard, puis ensuite choisit c de façon à allumer le maximum de lampes. Estimer le nombre moyen de lampes allumées par cette stratégie (indication : utiliser la question 2) et en déduire que $\mathbf{V}(n) = \Omega(n^{3/2})$.

Fixons $a=(a_{i,j})$ et choisissons (b_i) i.i.d. de loi uniforme sur $\{-1,1\}$. On a alors

$$\max_{c} F(a,b,c) = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} b_j \right|.$$

En utilisant la linéarité de l'espérance, le fait que $(b_j)_j$ et $(a_{ij}b_j)_j$ ont même loi et la question I.2, il vient

$$\operatorname{\mathsf{E}} \max_{c} F(a,b,c) = n \operatorname{\mathsf{E}} \left| \sum_{j=1}^{n} b_{j} \right| \geq \frac{n^{3/2} \gamma}{2}.$$

En particulier, pour tout choix de a, il existe b tel que $\max_c F(a,b,c) \ge \frac{n^{3/2}\gamma}{2}$.