TD 08 - Convergence des variables aléatoires (corrigé)

Exercice 1. Second théorème de Borell Cantelli

L'objectif de cet exercice est de montrer le second théorème de Borel-Cantelli. Il donne une réciproque du theorème de Borel-Cantelli vu en cours, dans le cas où les événements sont indépendants. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements *indépendants* de probabilité p_n . On suppose que la somme $\sum_n p_n$ diverge. L'objectif de cet exercice est de montrer qu'alors, presque sûrement, une infinité d'événements A_n se réalisent.

- 1. Exprimer l'événement "une infinité d'événements A_n se réalisent" en terme d'unions et d'intersections des événements A_n .
 - Soit $\omega \in \Omega$ un éléments de l'espace de probabilité. Alors ω appartient à l'événement "une infinité d'événements A_n se réalisent" si et seulement si ω appartient à une infinité de A_n , i.e. $\omega \in \cap_{k \geq 0} \cup_{n \geq k} A_n$. Donc l'événement "une infinité d'événements A_n se réalisent" n'est autre que l'événement $\cap_{k \geq 0} \cup_{n \geq k} A_n$ (aussi appelé $\limsup A_n$).
- **2.** Soit $B_{k,\ell}$ l'événement $\bigcap_{k \leq n \leq \ell} \overline{A_n}$. Montrer que pour tout k fixé, $\lim_{\ell \to \infty} \mathbf{P} \left\{ B_{k,\ell} \right\} = 0$. Indice : on pourra utiliser l'inégalité $1 + x \leq e^x$ pour tout $x \in \mathbb{R}$.
 - Par indépendance des A_n (et donc indépendance de leur complémentaire, cf exercice "complément des indépendants"), on a $\mathbf{P}\{B_{k,\ell}\} = \prod_{n=k}^{\ell} (1-p_n)$. En utilisant l'indice, on a alors $\mathbf{P}\{B_{k,\ell}\} \leq \prod_{n=k}^{\ell} e^{-p_n} = e^{-\sum_{n=k}^{\ell} p_n}$. Mais par hypothèse, la somme des p_n diverge, donc pour tout k fixé, $\lim_{\ell\to\infty}\sum_{n=k}^{\ell} p_n = +\infty$. On conclut que $\lim_{\ell\to\infty}\mathbf{P}\{B_{k,\ell}\} = 0$.
- 3. On note $B_k = \cap_{n \geq k} \overline{A_n}$. En déduire que $\mathbf{P} \left\{ \cup_k B_k \right\} = 0$.

 Il suffit de montrer que $\mathbf{P} \left\{ B_k \right\} = 0$ pour tout k. On aura alors $\mathbf{P} \left\{ \cup_k B_k \right\} \leq \sum_k \mathbf{P} \left\{ B_k \right\} = 0$. Mais $\mathbf{P} \left\{ B_k \right\} = \mathbf{P} \left\{ \cap_{n \geq k} \overline{A_n} \right\} = \lim_{\ell \to \infty} \mathbf{P} \left\{ B_{k\ell} \right\}$ (car les événements $B_{k\ell}$ sont décroissants et leur intersection est égale à B_k). On conclut avec la question précédente que $\mathbf{P} \left\{ B_k \right\} = 0$.
- **4.** Conclure que $P\{\text{"une infinité d'événements } A_n \text{ se réalisent"}\} = 1.$
 - On a vu à la première question que l'événement "une infinité d'événements A_n se réalisent" est en fait égal à $\bigcap_{k\geq 0} \cup_{n\geq k} A_n$. Le complémentaire de cet événement est donc $\bigcup_{k\geq 0} \bigcap_{n\geq k} \overline{A_n} = \bigcup_{k\geq 0} B_k$. On a donc bien $\mathbf{P}\left\{\bigcap_{k\geq 0} \cup_{n\geq k} A_n\right\} = 1 \mathbf{P}\left\{\bigcup_{k\geq 0} B_k\right\} = 1$ d'après la question précédente.
- 5. Application. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables de Bernoulli indépendantes de paramètre $\mathbf{P}\{X_n=1\}=p_n=1/n$. Montrer que presque sûrement la suite X_n contient un nombre infini de '1', mais seulement un nombre fini de '11'.
 - Commençons par montrer que presque sûrement, la suite X_n contient un nombre infini de '1'. On note A_n l'événement " $X_n = 1$ ". On a $\mathbf{P}\{A_n\} = 1/n$, et donc $\sum_n \mathbf{P}\{A_n\}$ diverge. D'après le second théorème de Borel-Cantelli (les A_n sont indépendants car les X_n le sont), on a donc \mathbf{P} ("une infinité d'événements A_n se réalisent") = 1, ce qui est équivalent à dire que presque sûrement la suite X_n contient une infinité de 1.

Montrons maintenant que presque sûrement la suite X_n ne contient qu'un nombre fini de '11'. On utilise cette fois le théorème de Borel-Cantelli vu en cours. Soit C_n l'événement " $X_n = X_{n+1} = 1$ ". Par indépendance de X_n et X_{n+1} , on a $\mathbf{P}\{C_n\} = 1/(n^2+n) \leq 1/n^2$. (Remarque : on n'a pas que les C_n sont indépendants, mais l'indépendance n'est pas nécessaire pour utiliser le théorème de Borel-Cantelli dans ce sens.) Donc la somme $\sum_n \mathbf{P}\{C_n\}$ converge. D'après le théorème de Borel-Cantelli, on conclut que presque sûrement, seuls un nombre fini d'événements C_n sont réalisés. C'est-à-dire, presque sûrement il n'y a qu'un nombre fini de '11' dans la suite des X_n .

Comme l'intersection de deux événement presque sûrs est aussi presque sûre, on conclut que presque sûrement la suite X_n contient un nombre infini de '1', mais seulement un nombre fini de '11'.

Exercice 2. Conditions de convergence

Soit X_n une suite infinie de variables de Bernoulli indépendantes de paramètres $1 - p_n$, avec $0 \le p_n \le 1/2$ (i.e. $\mathbf{P}\{X_n = 1\} = 1 - p_n$ et $\mathbf{P}\{X_n = 0\} = p_n$).

- 1. Donner une condition nécessaire et suffisante pour que la suite X_n converge en distribution.
 - Supposons que les variables X_n convergent en distribution vers une variable X. Les fonctions de répartitions F_{X_n} des variables X_n sont comme sur la Figure 1. En particulier, elles sont continues en 1/2, et pour tout n, on a $F_{X_n}(1/2) = p_n$. Notons $p = F_X(1/2)$. Par définition de la convergence en distribution, on a $\lim_{n\to\infty} p_n = p$ (en particulier, les p_n convergent).
 - Supposons à l'inverse que les p_n convergent vers une constante p. Comme [0,1] est fermé et les p_n vivent dans [0,1], on en déduit que $p \in [0,1]$. Définissons X la variable de Bernoulli de paramètre p. Alors, on a bien, pour tout $x \neq \{0,1\}$, $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$, i.e. X_n converge en distribution vers X.
 - On conclut que X_n converge en distribution ssi p_n converge.

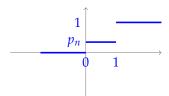


FIGURE 1 – Fonction de répartition de X_n

2. Donner une condition nécessaire et suffisante pour que la suite X_n converge en probabilité.

Comme la convergence en probabilité implique la convergence en distribution, on sait qu'une condition nécessaire est que les p_n converge. Mais ce n'est pas une condition suffisante. Supposons par exemple que $p_n=1/2$ pour tout n. Alors les p_n sont bien convergents, mais, si je prend $\varepsilon=1/2$, j'ai $\mathbf{P}\{|X_n-X_{n+1}|\geq \varepsilon\}=\mathbf{P}\{X_n\neq X_{n+1}\}=1/2$ par indépendance des X_n . En particulier, cette quantité ne tend pas vers zero, donc les X_n ne peuvent pas converger en probabilité. Le problème ici est que les X_n suivent bien la même loi, mais comme ils sont indépendants, rien ne nous assure que leurs valeurs seront proches.

Reprenons notre condition nécessaire. Supposons que X_n converge en probabilité vers X. Alors, pour tout $\varepsilon > 0$, on a $\mathbf{P}\{|X_n - X| \geq \varepsilon\} \to 0$. Par inégalité triangulaire, cela implique en particulier que $\mathbf{P}\{|X_n - X_{n+1}| \geq 2\varepsilon\} \to 0$. Prenons $2\varepsilon = 1/2$, on a alors $\mathbf{P}\{|X_n - X_{n+1}| \geq 2\varepsilon\} = \mathbf{P}\{X_n \neq X_{n+1}\} \geq p_n$. En effet, une fois X_{n+1} fixé, on a $\mathbf{P}\{|X_n \neq X_{n+1}| \geq p_n\}$ si $X_{n+1} = 1$ et $\mathbf{P}\{X_n \neq X_{n+1}\} = 1 - p_n$ si $X_{n+1} = 0$. Dans tous les cas, cette probabilité est supérieur à p_n , car on a choisi $p_n \leq 1/2$. On en déduit donc que $p_n \to 0$.

Supposons maintenant $p_n \to 0$, et notons X la variable aléatoire valant toujours 1. On a, pour tout $\varepsilon > 0$

$$\mathbf{P}\{|X_n - X| \ge \varepsilon\} = \mathbf{P}\{X_n = 0\} = p_n \to 0.$$

On en conclut que X_n converge en probabilité vers X.

On a donc que X_n converge en probabilité ssi p_n tend vers 0 (avec la contrainte $p_n \leq 1/2$).

3. Donner une condition nécessaire et suffisante pour que la suite X_n converge presque sûrement.

On a vu que si la suite X_n converge presque sûrement, alors elle converge vers 1 (car elle converge en probabilité). On veut donc montrer que $\mathbf{P}\{X_n \to 1\} = 1$, quitte à faire quelques hypothèses supplémentaires sur les p_n . On sait, d'après le lemme de Borel-Cantelli que si $\sum_n p_n$ converge, alors avec probabilité 1, un nombre fini de variables X_n valent 0 (car les événements " $X_n = 0$ " ont probabilité p_n). Mais dire qu'un nombre fini de variables X_n valent 0 est équivalent à dire que X_n converge vers 1 (car les variables X_n sont à valeur dans $\{0,1\}$). On en déduit donc que si $\sum_n p_n$ converge, alors X_n converge vers 1 presque sûrement.

Pour la réciproque, on utilise le second théorème de Borel-Cantelli (cf exercice "second théorème de Borel-Cantelli"), qui dit que si les X_n sont indépendants et $\sum p_n$ diverge, alors, avec probabilité 1, il existe une infinité de X_n valant 0. En particulier, X_n ne peux pas converger vers 1. On en déduit donc que si X_n converge presque sûrement, alors $\sum_n p_n$ converge.

On a donc que X_n converge presque sûrement ssi $\sum_n p_n$ converge.

Exercice 3. Convergence

1. Let $\{X_n\}$ be a sequence of random variables with $\mathbf{E}[X_n] = 5$ and $\mathbf{Var}[X_n] = \frac{1}{\sqrt{n}}$ for all n. Is it true that X_n must converge in probability to 5?

Oui, (X_n) converge en probabilité vers 5. Selon la définition, il faut prouver que $\forall \varepsilon \quad \mathbf{P}\{|X_n-5|>\varepsilon\} \rightarrow_{n\to+\infty} 0$. Or comme $\mathbf{E}[X_n]=5$, on obtient avec l'inégalité de Chebyshev :

$$\forall \epsilon \quad \textbf{P}\left\{\left|X_n - 5\right| > \epsilon\right\} \leq \frac{\textbf{Var}\left[X_n\right]}{\epsilon^2} = \frac{1}{\sqrt{n}\epsilon^2} \to_{n \to +\infty} 0 \ .$$

2. Let $\{X_n\}$ be independent and identically distributed random variables with $\mathbf{E}[X_n] = 4$ and $\mathbf{Var}[X_n] = 9$ for all n. Find C(n, x) such that

$$\lim_{n\to\infty} P(X_1+\cdots+X_n\leq C(n,x))=\Phi(x),$$

where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$.

Par le Théorème Central Limite, si l'on pose

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\sigma} \quad \text{avec } S_n = \sum_{i=1}^n X_i, \quad \mu = \mathbf{E}\left[X_n\right] \text{ et } \sigma = \sqrt{\mathbf{Var}\left[X_n\right]}$$

et Z une v.a. suivant une loi normale $\mathcal{N}(0,1)$ alors

$$\mathbf{P}\left\{Z_n \le x\right\} \longrightarrow_{n \to +\infty} \mathbf{P}\left\{Z \le x\right\} = \int_{-\infty}^{x} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt = \Phi(x) \ .$$

Or

$$Z_n \le x \Leftrightarrow \frac{\sum_{i=1}^n X_i - 4n}{3\sqrt{n}} \le x \Leftrightarrow \sum_{i=1}^n X_i \le 4n + 3x\sqrt{n} .$$

Donc on pose $C(n,x)=4n+3x\sqrt{n}$ et on obtient que $\mathbf{P}\left\{\sum_{i=1}^{n}X_{i}\leq C(n,x)\right\}=\mathbf{P}\left\{Z_{n}\leq x\right\}\longrightarrow_{n\to+\infty}\Phi(x)$.

3. Give an example of sequence $\{Y_n\}$ such that Y_n converges in probability to 0, $\frac{Y_n}{n}$ converges almost surely to 0, but Y_n does not converge almost surely to 0.

http://lthiwww.epfl.ch/~leveque/Advanced_Prob/lecture_notes4.pdf page 3

On numérote tous les mots sur $\{0,1\}$ par ordre croissant de longueur, c'est-à-dire qu'on pose $w_0=0, w_1=1, w_2=00, w_3=01, w_4=10, w_5=11$, etc.... On pose ℓ_n la longueur du mot w_n (on remarque que ℓ_n est de l'ordre de $\log n$ car tous les mots entre w_{2^k} et $w_{2^{k+1}-1}$ ont longueur k).

On fait maintenant une infinité de lancers à pile ou face d'une pièce équilibrée, puis on définit Y_n ainsi : on regarde les résultats sur les ℓ_n premiers lancers, et Y_n vaut 1 si le résultat des ces ℓ_n premiers lancers correspond exactement au mot w_n (avec 1 pour pile, 0 pour face). Par exemple, $Y_3=1$ si et seulement si le premier lancer a donné face et le deuxième lancer a donné pile (car $w_3=01$). De cette manière, exactement un Y_i parmi Y_{2k},\ldots,Y_{2k+1-1} vaut 1 et tous les autres valent 0.

Montrons que (Y_n) vérifient les hypothèse de l'énoncé : tout d'abord, Y_n converge en probabilité vers 0 car

$$\forall \varepsilon \quad \mathbf{P}\left\{|Y_n| > \varepsilon\right\} = \mathbf{P}\left\{Y_n = 1\right\} = (\frac{1}{2})^{\ell_n} \approx \frac{1}{n} \to_{n \to +\infty} 0$$

De plus, Y_n/n converge presque sûrement vers 0 car $|Y_n/n| \le 1/n \to_{n\infty} 0$ donc $\mathbf{P}\{\lim_{n\infty} Y_n/n = 0\} = 1$.

Par contre, Y_n ne converge pas presque sûrement vers 0: après une longue séquence de 0 dans Y_n , il y aura toujours un 1, donc quelle que soit la réalisation ω , $Y_n(\omega)$ ne tend pas vers 0 quand n tend vers l'infini. Donc

$$\mathbf{P}\left\{\lim_{n\to\infty}Y_n/n=0\right\}=0$$

ce qui est le contraire de la définition.

Exercice 4. Théorème de Mycielski

Recall that the *chromatic number* $\chi(G)$ is the smallest number of colors needed to color the vertices of G such that any two adjacent vertices have different colors. Clearly, graphs with large cliques have a high chromatic number, but the opposite is not true. The goal of this exercise is th prove Mycielski's theorem, which states that for any integer $k \geq 2$, there exists a graph G such that G contains no triangles and $\chi(G) \geq k$.

- **1.** Fix $0 < \varepsilon < \frac{1}{3}$ and let G be a random graph on n vertices where each edge appears independently with probability $p = n^{\varepsilon 1}$. Show that when n tends to infinity, the probability that G has more than n/2 triangles tends to 0.
 - The expected number of triangles is less than n^3p^3 . By Markov, G has more than n/2 triangles with a probability $<\frac{n^3p^3}{n/2}\to 0$.
- **2.** Let $\alpha(G)$ be the size of the largest *independent set* of G (A set of vertices X is *independent* if there is no edge between any two vertices of X in G). Show that $\chi(G) \ge n/\alpha(G)$.
 - By definition of χ , there is a coloring of G with χ colors, which is also a partition of V(G) into subsets such that each subset is independent. Hence, the carnality of each subset is at most α . This implies $\chi \alpha \geq n$.
- **3.** Let $a = 3n^{1-\varepsilon} \ln n$. Show that when n tends to infinity,

$$\mathbb{P}(\alpha(G) < a) \to 1.$$

Deduce that there exists n and G of size n such that G has at most n/2 triangles and $\alpha(G) < a$.

 α exceeds α with proba at most

$$\binom{n}{a}(1-p)^{\binom{2}{a}} < n^a e^{-p\frac{1}{2}a(a-1)} < n^a n^{-\frac{3}{2}(a-1)} \to 0.$$

4. Let G be such a graph. Let G' be a graph obtained from G by removing a minimum number of of vertices so that G' does not contain any triangle. Show that

$$\chi(G') > \frac{n^{\varepsilon}}{6 \ln n}$$

and conclude the proof of Mycielski's Theorem.

$$\chi > |G'|/\alpha > \frac{n/2}{3n^{1-\varepsilon}\ln n} > \frac{n^{\varepsilon}}{6\ln n}$$